
Wavelet Toolbox™

Getting Started Guide

R2014a

Michel Misiti
Yves Misiti
Georges Oppenheim
Jean-Michel Poggi

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Wavelet Toolbox™ Getting Started Guide

© COPYRIGHT 1997–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
March 1997 First printing New for Version 1.0
September 2000 Second printing Revised for Version 2.0 (Release 12)
June 2001 Online only Revised for Version 2.1 (Release 12.1)
July 2002 Online only Revised for Version 2.2 (Release 13)
June 2004 Online only Revised for Version 3.0 (Release 14)
July 2004 Third printing Revised for Version 3.0
October 2004 Online only Revised for Version 3.0.1 (Release 14SP1)
March 2005 Online only Revised for Version 3.0.2 (Release 14SP2)
June 2005 Fourth printing Minor revision for Version 3.0.2
September 2005 Online only Minor revision for Version 3.0.3 (Release R14SP3)
March 2006 Online only Minor revision for Version 3.0.4 (Release 2006a)
September 2006 Online only Revised for Version 3.1 (Release 2006b)
March 2007 Online only Revised for Version 4.0 (Release 2007a)
September 2007 Online only Revised for Version 4.1 (Release 2007b)
October 2007 Fifth printing Revised for Version 4.1
March 2008 Online only Revised for Version 4.2 (Release 2008a)
October 2008 Online only Revised for Version 4.3 (Release 2008b)
March 2009 Online only Revised for Version 4.4 (Release 2009a)
September 2009 Online only Minor revision for Version 4.4.1 (Release 2009b)
March 2010 Online only Revised for Version 4.5 (Release 2010a)
September 2010 Online only Revised for Version 4.6 (Release 2010b)
April 2011 Online only Revised for Version 4.7 (Release 2011a)
September 2011 Online only Revised for Version 4.8 (Release 2011b)
March 2012 Online only Revised for Version 4.9 (Release 2012a)
September 2012 Online only Revised for Version 4.10 (Release 2012b)
March 2013 Online only Revised for Version 4.11 (Release 2013a)
September 2013 Online only Revised for Version 4.12 (Release 2013b)
March 2014 Online only Revised for Version 4.13 (Release 2014a)

Contents

Getting Started with Wavelet Toolbox Software

1
Wavelet Toolbox Product Description 1-2
Key Features . 1-2

Installing Wavelet Toolbox Software 1-3
System Recommendations . 1-3
Platform-Specific Details . 1-3

Wavelets: Tools for Sparse Representation 1-5
What is a Wavelet? . 1-5
What Can Wavelet Analysis Do? . 1-6

From Fourier Analysis to Wavelet Analysis 1-11
Inner Products . 1-11
Fourier Transform . 1-13
Short-Time Fourier Transform . 1-15

Continuous Wavelet Transform . 1-19
Definition of the Continuous Wavelet Transform 1-19
Scale . 1-21
Shifting . 1-25
CWT as a Windowed Transform . 1-25
CWT as a Filtering Technique . 1-26
DFT-Based Continuous Wavelet Transform 1-28
Inverse Continuous Wavelet Transform 1-30
Continuous Wavelet Transform Algorithm 1-32
Interpreting CWT Coefficients . 1-33
Redundancy in the Continuous Wavelet Transform 1-49

Critically-Sampled Discrete Wavelet Transform 1-50
One-Stage Filtering: Approximations and Details 1-50
Multiple-Level Decomposition . 1-53

Critically-Sampled Wavelet Reconstruction 1-55

v

Reconstruction Filters . 1-56
Reconstructing Approximations and Details 1-56
Wavelets From Conjugate Mirror Filters 1-58

Wavelet Packet Analysis . 1-61

Introduction to Wavelet Families 1-63
Haar . 1-64
Daubechies . 1-65
Biorthogonal . 1-65
Coiflets . 1-67
Symlets . 1-67
Morlet . 1-68
Mexican Hat . 1-68
Meyer . 1-69
Other Real Wavelets . 1-69
Complex Wavelets . 1-69

References . 1-71

Using Wavelets

2
Introduction to Wavelet Toolbox GUIs and
Functions . 2-2

Wavelets: Working with Images . 2-3
Understanding Images in the MATLAB Environment 2-3
Indexed Images . 2-3
Wavelet Decomposition of Indexed Images 2-5
RGB (Truecolor) Images . 2-5
Wavelet Decomposition of Truecolor Images 2-6
Other Images . 2-6
Image Conversion . 2-6

One-Dimensional Wavelet Density Estimation 2-10
One-Dimensional Estimation Using the Graphical
Interface . 2-10

vi Contents

Importing and Exporting Information from the Graphical
Interface . 2-14

Interactive 1-D Wavelet Coefficient Selection 2-16

Interactive 2-D Wavelet Coefficient Selection 2-25

One-Dimensional Extension . 2-32
One-Dimensional Extension Using the Command Line . . . 2-32
One-Dimensional Extension Using the Graphical
Interface . 2-32

Importing and Exporting Information from the Graphical
Interface . 2-38

Two-Dimensional Extension . 2-39
Two-Dimensional Extension Using the Command Line . . . 2-39
Two-Dimensional Extension Using the Graphical
Interface . 2-39

Importing and Exporting Information from the Graphical
Interface . 2-41

Image Fusion . 2-42
Image Fusion Using the Command Line 2-43
Image Fusion Using the Graphical Interface 2-45

One-Dimensional Fractional Brownian Motion
Synthesis . 2-50
Fractional Brownian Motion Synthesis Using the Command
Line . 2-50

Fractional Brownian Motion Synthesis Using the Graphical
Interface . 2-51

Saving the Synthesized Signal . 2-54

New Wavelet for CWT . 2-56
New Wavelet for CWT Using the Command Line 2-56
New Wavelet for CWT Using the Graphical Interface 2-58
Saving the New Wavelet . 2-65

vii

Getting Started with Wavelet Analysis

3
Wavelet Families and Properties . 3-2

Visualizing Wavelets, Wavelet Packets, and Wavelet
Filters . 3-5

Continuous Wavelet Analysis . 3-9

DFT-Based Continuous Wavelet Transform and Inverse
Continuous Wavelet Transform 3-11

Critically-Sampled Discrete Wavelet Analysis 3-16
1-D Wavelet Denoising . 3-16
2-D Decimated Discrete Wavelet Analysis 3-19

Lifting . 3-22

Nondecimated Discrete Wavelet Analysis 3-28

Critically Sampled Wavelet Packet Analysis 3-32

Matching Pursuit . 3-34

viii Contents

1

Getting Started with
Wavelet Toolbox Software

• “Wavelet Toolbox Product Description” on page 1-2

• “Installing Wavelet Toolbox Software” on page 1-3

• “Wavelets: Tools for Sparse Representation” on page 1-5

• “From Fourier Analysis to Wavelet Analysis” on page 1-11

• “Continuous Wavelet Transform” on page 1-19

• “Critically-Sampled Discrete Wavelet Transform” on page 1-50

• “Critically-Sampled Wavelet Reconstruction” on page 1-55

• “Wavelet Packet Analysis” on page 1-61

• “Introduction to Wavelet Families” on page 1-63

• “References” on page 1-71

1 Getting Started with Wavelet Toolbox™ Software

Wavelet Toolbox Product Description
Analyze and synthesize signals and images using wavelet techniques

Wavelet Toolbox™ provides functions and an app for developing wavelet-based
algorithms for the analysis, synthesis, denoising, and compression of signals
and images.

The toolbox lets you explore wavelet properties and applications such as
speech and audio processing, image and video processing, biomedical imaging,
and 1-D and 2-D applications in communications and geophysics.

Key Features

• Wavelet and signal processing utilities, including a function to convert
scale to frequency

• Methods for adding wavelet families

• Lifting methods for constructing wavelets

• Customizable presentation and visualization of data

• Wavelet Design and Analysis app for continuous and discrete wavelet
analysis

• Wavelet packets, implemented as MATLAB® objects

• One-dimensional multisignal analysis, compression, and denoising

• Multiscale principal component analysis

• Multivariate denoising

1-2

Installing Wavelet Toolbox™ Software

Installing Wavelet Toolbox Software
To install this toolbox on your computer, see the appropriate platform-specific
MATLAB installation guide. To determine if the Wavelet Toolbox software
is already installed on your system, check for a subfolder named wavelet
within the main toolbox folder.

Wavelet Toolbox software can perform signal or image analysis. For indexed
images or truecolor images (represented by m-by-n-by-3 arrays of uint8), all
wavelet functions use floating-point operations. To avoid Out of Memory
errors, be sure to allocate enough memory to process various image sizes.

The memory can be real RAM or can be a combination of RAM and virtual
memory. See your operating system documentation for how to configure
virtual memory.

System Recommendations
While not a requirement, we recommend you obtain Signal Processing
Toolbox™ and Image Processing Toolbox™ software to use in conjunction
with the Wavelet Toolbox software. These toolboxes provide complementary
functionality that give you maximum flexibility in analyzing and processing
signals and images.

This manual makes no assumption that your computer is running any other
MATLAB toolboxes.

Platform-Specific Details
Some details of the use of the Wavelet Toolbox software may depend on your
hardware or operating system.

Windows Fonts
We recommend you set your operating system to use “Small Fonts.” Set this
option by clicking the Display icon in your desktop’s Control Panel (accessible
through the Settings > Control Panel submenu). Select the Configuration
option, and then use the Font Size menu to change to Small Fonts. You’ll
have to restart Windows® for this change to take effect.

1-3

1 Getting Started with Wavelet Toolbox™ Software

Fonts for Non-Windows Platforms
We recommend you set your operating system to use standard default fonts.

However, for all platforms, if you prefer to use large fonts, some of the labels
in the GUI figures may be illegible when using the default display mode of the
toolbox. To change the default mode to accept large fonts, use the wtbxmngr
function. (For more information, see either the wtbxmngr help or its reference
page.)

Mouse Compatibility
Wavelet Toolbox software was designed for three distinct types of mouse
control.

Left Mouse Button Middle Mouse Button Right Mouse Button

Make selections.
Activate controls.

Display cross-hairs to
show position-dependent
information.

Translate plots up
and down, and left
and right.

Note The functionality of the middle mouse button and the right mouse
button can be inverted depending on the platform.

1-4

Wavelets: Tools for Sparse Representation

Wavelets: Tools for Sparse Representation
Many signals and images of interest exhibit piecewise smooth behavior
punctuated by transients. Speech signals are characterized by short bursts
encoding consonants followed by steady-state oscillations indicative of vowels.
Natural images have edges. Financial time series exhibit transient behavior,
which characterize rapid upturns and downturns in economic conditions.
Unlike the Fourier basis, wavelet bases are adept at sparsely representing
piecewise regular signals and images, which include transient behavior.

What is a Wavelet?
A wavelet is a waveform of effectively limited duration that has an average
value of zero and nonzero norm.

Compare wavelets with sine waves, which are the basis of Fourier analysis.
Sinusoids do not have limited duration — they extend from minus to plus
infinity. While sinusoids are smooth and predictable, wavelets tend to be
irregular and asymmetric.

Fourier analysis consists of breaking up a signal into sine waves of various
frequencies. Similarly, wavelet analysis is the breaking up of a signal into
shifted and scaled versions of the original (or mother) wavelet.

Just looking at pictures of wavelets and sine waves, you can see intuitively
that signals with sharp changes might be better analyzed with an irregular
wavelet than with a smooth sinusoid.

It also makes sense that local features can be described better with wavelets
that have local extent.

1-5

1 Getting Started with Wavelet Toolbox™ Software

What Can Wavelet Analysis Do?
This example shows how to localize a discontinuity in a sine wave.

Create a 1-Hz sine wave sampled at 100 Hz. The sine wave has a discontinuity
at t=0.5 seconds.

t = linspace(0,1,100)';
x = sin(2*pi*t);
x1 = x-0.15;
y = zeros(size(x));
y(1:length(y)/2) = x(1:length(y)/2);
y(length(y)/2+1:end) = x1(length(y)/2+1:end);
stem(t,y,'markerfacecolor',[0 0 1]); xlabel('Seconds'); ylabel('Amplitude')

1-6

Wavelets: Tools for Sparse Representation

Obtain the nondecimated discrete wavelet transform of the sine wave using
the 'sym2' wavelet and plot the wavelet (detail) coefficients along with the
original signal.

[swa,swd] = swt(y,1,'sym2');
subplot(211)
stem(t,y,'markerfacecolor',[0 0 1]); title('Orignal Signal');
subplot(212)
stem(t,swd,'markerfacecolor',[0 0 1]); title('Level 1 Wavelet Coefficients'

Compare the Fourier coefficient magnitudes for the 1-Hz sine wave with and
without the discontinuity.

dftsig = fft([x y]);

1-7

1 Getting Started with Wavelet Toolbox™ Software

dftsig = dftsig(1:length(y)/2+1,:);
df = 100/length(y);
freq = 0:df:50;
stem(freq,abs(dftsig));
xlabel('Hz'); ylabel('Magnitude');
legend('sine wave','sine wave with discontinuity');

There is minimal difference in the magnitudes of the Fourier coefficients.
Because the discrete Fourier basis vectors have support over the entire time
interval, the discrete Fourier transform does not detect the discontinuity as
efficiently as the wavelet transform.

1-8

Wavelets: Tools for Sparse Representation

Compare the level 1 wavelet coefficients for the sine wave with and without
the discontinuity.

[~,swdx] = swt(x,1,'sym2');
subplot(211)
stem(t,swd); title('Sine Wave with Discontinuity (Wavelet Coefficients)');
subplot(212)
stem(t,swdx); title('Sine Wave (Wavelet Coefficients)');

The wavelet coefficients of the two signals demonstrate a significant
difference.

Wavelet analysis is often capable of revealing characteristics of a signal or
image that other analysis techniques miss, like trends, breakdown points,

1-9

1 Getting Started with Wavelet Toolbox™ Software

discontinuities in higher derivatives, and self-similarity. Furthermore,
because wavelets provide a different view of data than those presented by
Fourier techniques, wavelet analysis can often significantly compress or
denoise a signal without appreciable degradation.

1-10

From Fourier Analysis to Wavelet Analysis

From Fourier Analysis to Wavelet Analysis

In this section...

“Inner Products” on page 1-11

“Fourier Transform” on page 1-13

“Short-Time Fourier Transform” on page 1-15

Inner Products
Both the Fourier and wavelet transforms measure similarity between a
signal and an analyzing function. Both transforms use a mathematical tool
called an inner product as this measure of similarity. The two transforms
differ in their choice of analyzing function. This results in the different way
the two transforms represent the signal and what kind of information can
be extracted.

As a simple example of the inner product as a measure of similarity, consider
the inner product of vectors in the plane. The following MATLAB example

calculates the inner product of three unit vectors, { , , }u v w , in the plane:

{
/

/
,

/

/
, }

3 2
1 2

1 2

1 2

0
1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜

⎞

⎠
⎟

u = [sqrt(3)/2 1/2];
v = [1/sqrt(2) 1/sqrt(2)];
w = [0 1];
% Three unit vectors in the plane
quiver([0 0 0],[0 0 0],[u(1) v(1) w(1)],[u(2) v(2) w(2)]);
axis([-1 1 0 1]);
text(-0.020,0.9371,'w');
text(0.6382,0.6623,'v');
text(0.7995,0.4751,'u');
% Compute inner products and print results
fprintf('The inner product of u and v is %1.2f\n', dot(u,v))
fprintf('The inner product of v and w is %1.2f\n', dot(w,v))

1-11

1 Getting Started with Wavelet Toolbox™ Software

fprintf('The inner product of u and w is %1.2f\n', dot(u,w))

Looking at the figure, it is clear that u and v are most similar in their
orientation, while u and w are the most dissimilar.

The inner products capture this geometric fact. Mathematically, the inner
product of two vectors, u and v is equal to the product of their norms and the
cosine of the angle, θ, between them:

< >=u v u v, || |||| ||cos()

For the special case when both u and v have unit norm, or unit energy, the
inner product is equal to cos(θ) and therefore lies between [-1,1]. In this case,
you can interpret the inner product directly as a correlation coefficient. If
either u or v does not have unit norm, the inner product may exceed 1 in
absolute value. However, the inner product still depends on the cosine of the
angle between the two vectors making it interpretable as a kind of correlation.
Note that the absolute value of the inner product is largest when the angle
between them is either 0 or  radians (0 or 180 degrees). This occurs when
one vector is a real-valued scalar multiple of the other.

1-12

From Fourier Analysis to Wavelet Analysis

While inner products in higher-dimensional spaces like those encountered in
the Fourier and wavelet transforms do not exhibit the same ease of geometric
interpretation as the previous example, they measure similarity in the
same way. A significant part of the utility of these transforms is that they
essentially summarize the correlation between the signal and some basic
functions with certain physical properties, like frequency, scale, or position.
By summarizing the signal in these constituent parts, we are able to better
understand the mechanisms that produced the signal.

Fourier Transform
Fourier analysis is used as a starting point to introduce the wavelet
transforms, and as a benchmark to demonstrate cases where wavelet analysis
provides a more useful characterization of signals than Fourier analysis.

Mathematically, the process of Fourier analysis is represented by the Fourier
transform:

F f t e dtj t() () =
−∞

∞ −∫
which is the integral (sum) over all time of the signal f(t) multiplied by
a complex exponential. Recall that a complex exponential can be broken
down into real and imaginary sinusoidal components. Note that the Fourier
transform maps a function of a single variable into another function of a
single variable.

The integral defining the Fourier transform is an inner product. See “Inner
Products” on page 1-11 for an example of how inner products measure of
similarity between two signals. For each value of ω, the integral (or sum) over
all values of time produces a scalar, F(ω), that summarizes how similar the
two signals are. These complex-valued scalars are the Fourier coefficients.
Conceptually, multiplying each Fourier coefficient, F(ω), by a complex
exponential (sinusoid) of frequency ω yields the constituent sinusoidal
components of the original signal. Graphically, the process looks like

1-13

1 Getting Started with Wavelet Toolbox™ Software

Because e j t is complex-valued, F(ω) is, in general, complex-valued. If the

signal contains significant oscillations at an angular frequency of 0 , the

absolute value of F()0 will be large. By examining a plot of | ()|F  as a
function of angular frequency, it is possible to determine what frequencies
contribute most to the variability of f(t).

To illustrate how the Fourier transform captures similarity between a signal
and sinusoids of different frequencies, the following MATLAB code analyzes a
signal consisting of two sinusoids of 4 and 8 Hertz (Hz) corrupted by additive
noise using the discrete Fourier transform.

rng(0,'twister');
Fs = 128;
t = linspace(0,1,128);
x = 2*cos(2*pi*4*t)+1.5*sin(2*pi*8*t)+randn(size(t));
xDFT = fft(x);
Freq = 0:64;
subplot(211);
plot(t,x); xlabel('Seconds'); ylabel('Amplitude');
subplot(212);
plot(Freq,abs(xDFT(1:length(xDFT)/2+1)))
set(gca,'xtick',[4:4:64]);
xlabel('Hz'); ylabel('Magnitude');

1-14

From Fourier Analysis to Wavelet Analysis

Viewed as a time signal, it is difficult to determine what significant
oscillations are present in the data. However, looking at the absolute value
of the Fourier transform coefficients as function of frequency, the dominant
oscillations at 4 and 8 Hz are easy to detect.

Short-Time Fourier Transform
The Fourier transform summarizes the similarity between a signal and a
sinusoid with a single complex number. The magnitude of the complex
number captures the degree to which oscillations at a particular frequency
contribute to the signal’s energy, while the argument of the complex number
captures phase information. Note that the Fourier coefficients have no
time dependence. The Fourier coefficients are obtained by integrating, or
summing, over all time, so it is clear that this information is lost. Consider
the following two signals:

1-15

1 Getting Started with Wavelet Toolbox™ Software

Both signals consist of a single sine wave with a frequency of 20 Hz. However,
in the top signal, the sine wave lasts the entire 1000 milliseconds. In the
bottom plot, the sine wave starts at 250 and ends at 750 milliseconds. The
Fourier transform detects that the two signals have the same frequency
content, but has no way of capturing that the duration of the 20 Hz oscillation
differs between the two signals. Further, the Fourier transform has no
mechanism for marking the beginning and end of the intermittent sine wave.

In an effort to correct this deficiency, Dennis Gabor (1946) adapted the
Fourier transform to analyze only a small section of the signal at a time --
a technique called windowing the signal. Gabor’s adaptation is called the
short-time Fourier transform (STFT). The technique works by choosing a time
function, or window, that is essentially nonzero only on a finite interval. As
one example consider the following Gaussian window function:

w t e t() = −


 2

The Gaussian function is centered around t=0 on an interval that depends on
the value of α. Shifting the Gaussian function by τ results in:

1-16

From Fourier Analysis to Wavelet Analysis

w t e t(,) ()− = − −



  2

which centers the Gaussian window around τ. Multiplying a signal by w t()−
selects a portion of the signal centered at τ. Taking the Fourier transform
of these windowed segments for different values of τ, produces the STFT.
Mathematically, this is:

F f t w t e dtj t(,) () ()   = −∫ −

The STFT maps a function of one variable into a function of two variables, ω
and τ. This two-dimensional representation of a one-dimensional signal means
that there is redundancy in the STFT. The following figure demonstrates how
the STFT maps a signal into a time-frequency representation.

The STFT represents a sort of compromise between time- and frequency-based
views of a signal. It provides some information about both when and at
what frequencies a signal event occurs. However, you can only obtain this
information with limited precision, and that precision is determined by the
size of the window.

While the STFT compromise between time and frequency information can
be useful, the drawback is that once you choose a particular size for the
time window, that window is the same for all frequencies. Many signals
require a more flexible approach -- one where you can vary the window size to
determine more accurately either time or frequency.

Instead of plotting the STFT in three dimensions, the convention is to code

| (,)|F   as intensity on some color map. Computing and displaying the
STFT of the two 20-Hz sine waves of different duration shown previously:

1-17

1 Getting Started with Wavelet Toolbox™ Software

By using the STFT, you can see that the intermittent sine wave begins near
250 msec and ends around 750 msec. Additionally, you can see that the
signal’s energy is concentrated around 20 Hz.

1-18

Continuous Wavelet Transform

Continuous Wavelet Transform

In this section...

“Definition of the Continuous Wavelet Transform” on page 1-19

“Scale” on page 1-21

“Shifting” on page 1-25

“CWT as a Windowed Transform” on page 1-25

“CWT as a Filtering Technique” on page 1-26

“DFT-Based Continuous Wavelet Transform” on page 1-28

“Inverse Continuous Wavelet Transform” on page 1-30

“Continuous Wavelet Transform Algorithm” on page 1-32

“Interpreting CWT Coefficients” on page 1-33

“Redundancy in the Continuous Wavelet Transform” on page 1-49

Definition of the Continuous Wavelet Transform
Like the Fourier transform, the continuous wavelet transform (CWT) uses
inner products to measure the similarity between a signal and an analyzing
function. In the Fourier transform, the analyzing functions are complex

exponentials, e j t . The resulting transform is a function of a single variable,
ω. In the short-time Fourier transform, the analyzing functions are windowed

complex exponentials, w t e j t()  , and the result in a function of two variables.

The STFT coefficients, F(,),  represent the match between the signal and a
sinusoid with angular frequency ω in an interval of a specified length centered
at τ.

In the CWT, the analyzing function is a wavelet, ψ. The CWT compares the
signal to shifted and compressed or stretched versions of a wavelet. Stretching
or compressing a function is collectively referred to as dilation or scaling
and corresponds to the physical notion of scale. By comparing the signal
to the wavelet at various scales and positions, you obtain a function of two
variables. The two-dimensional representation of a one-dimensional signal is
redundant. If the wavelet is complex-valued, the CWT is a complex-valued

1-19

1 Getting Started with Wavelet Toolbox™ Software

function of scale and position. If the signal is real-valued, the CWT is a
real-valued function of scale and position. For a scale parameter, a>0, and
position, b, the CWT is:

C a b f t t f t
a

dtt b
a

(, ; (), ()) () ()* =
−∞

∞ −∫ 1

where * denotes the complex conjugate. Not only do the values of scale and
position affect the CWT coefficients, the choice of wavelet also affects the
values of the coefficients.

By continuously varying the values of the scale parameter, a, and the position
parameter, b, you obtain the cwt coefficients C(a,b). Note that for convenience,
the dependence of the CWT coefficients on the function and analyzing wavelet
has been suppressed.

Multiplying each coefficient by the appropriately scaled and shifted wavelet
yields the constituent wavelets of the original signal.

There are many different admissible wavelets that can be used in the CWT.
While it may seem confusing that there are so many choices for the analyzing
wavelet, it is actually a strength of wavelet analysis. Depending on what
signal features you are trying to detect, you are free to select a wavelet that
facilitates your detection of that feature. For example, if you are trying to
detect abrupt discontinuities in your signal, you may choose one wavelet.
On the other hand, if you are interesting in finding oscillations with smooth
onsets and offsets, you are free to choose a wavelet that more closely matches
that behavior.

1-20

Continuous Wavelet Transform

Scale
Like the concept of frequency, scale is another useful property of signals and
images. For example, you can analyze temperature data for changes on
different scales. You can look at year-to-year or decade-to-decade changes. Of
course, you can examine finer (day-to-day), or coarser scale changes as well.
Some processes reveal interesting changes on long time, or spatial scales
that are not evident on small time or spatial scales. The opposite situation
also happens. Some of our perceptual abilities exhibit scale invariance. You
recognize people you know regardless of whether you look at a large portrait,
or small photograph.

To go beyond colloquial descriptions such as “stretching” or “shrinking” we
introduce the scale factor, often denoted by the letter a. The scale factor is a
inherently positive quantity, a>0. For sinusoids, the effect of the scale factor
is very easy to see.

1-21

1 Getting Started with Wavelet Toolbox™ Software

In sin(at), the scale is the inverse of the radian frequency, a.

The scale factor works exactly the same with wavelets. The smaller the scale
factor, the more “compressed” the wavelet. Conversely, the larger the scale,
the more stretched the wavelet. The following figure illustrates this for
wavelets at scales 1,2, and 4.

1-22

Continuous Wavelet Transform

This general inverse relationship between scale and frequency holds for
signals in general. See “CWT as a Filtering Technique” on page 1-26 and
“Scale and Frequency” on page 1-23 for more information on the relationship
between scale and frequency.

Not only is a time-scale representation a different way to view data, it is a very
natural way to view data derived from a great number of natural phenomena.

Scale and Frequency
There is clearly a relationship between scale and frequency. Recall that
higher scales correspond to the most “stretched” wavelets. The more stretched
the wavelet, the longer the portion of the signal with which it is being
compared, and therefore the coarser the signal features measured by the
wavelet coefficients.

1-23

1 Getting Started with Wavelet Toolbox™ Software

To summarize, the general correspondence between scale and frequency is:

• Low scale a  Compressed wavelet  Rapidly changing details  High
frequency ω.

• High scale a  Stretched wavelet  Slowly changing, coarse features 
Low frequency ω.

While there is a general relationship between scale and frequency, no precise
relationship exists. Users familiar with Fourier analysis often want to define
a mapping between a wavelet at a given scale with a specified sampling period
to a frequency in hertz. You can only do this in a general sense. Therefore,
it is better to talk about the pseudo-frequency corresponding to a scale. The
Wavelet Toolbox software provides two functions centfrq and scal2frq,
which enable you to find these approximate scale-frequency relationships for
specified wavelets and scales.

The basic approach identifies the peak power in the Fourier transform of the
wavelet as its center frequency and divides that value by the product of the
scale and the sampling interval. See scal2frq for details. The following
example shows the match between the estimated center frequency of the db8
wavelet and a sinusoid of the same frequency.

1-24

Continuous Wavelet Transform

The relationship between scale and frequency in the CWT is also explored in
“CWT as a Filtering Technique” on page 1-26.

Shifting
Shifting a wavelet simply means delaying (or advancing) its onset.
Mathematically, delaying a function f(t) by k is represented by f(t – k):

CWT as a Windowed Transform
In “Short-Time Fourier Transform” on page 1-15, the STFT is described as a
windowing of the signal to create a local frequency analysis. A shortcoming
of the STFT approach is that the window size is constant. There is a
trade off in the choice of window size. A longer time window improves
frequency resolution while resulting in poorer time resolution because the

1-25

1 Getting Started with Wavelet Toolbox™ Software

Fourier transform loses all time resolution over the duration of the window.
Conversely, a shorter time window improves time localization while resulting
in poorer frequency resolution.

Wavelet analysis represents the next logical step: a windowing technique with
variable-sized regions. Wavelet analysis allows the use of long time intervals
where you want more precise low-frequency information, and shorter regions
where you want high-frequency information.

The following figure contrasts time, frequency, time-frequency, and time-scale
representations of a signal.

CWT as a Filtering Technique
The continuous wavelet transform (CWT) computes the inner product of a

signal, f t() , with translated and dilated versions of an analyzing wavelet,

 ().t The definition of the CWT is:

1-26

Continuous Wavelet Transform

C a b f t t f t
a

dtt b
a

(, ; (), ()) () ()* =
−∞

∞ −∫ 1

You can also interpret the CWT as a frequency-based filtering of the signal by
rewriting the CWT as an inverse Fourier transform.

C a b f t t a a e df j b(, ; (), ()) () ())(*


   =
∧

−∞

∞ ∧

∫1
2

where ˆ()f  and ˆ ()  are the Fourier transforms of the signal and the
wavelet.

From the preceding equations, you can see that stretching a wavelet in time
causes its support in the frequency domain to shrink. In addition to shrinking
the frequency support, the center frequency of the wavelet shifts toward lower
frequencies. The following figure demonstrates this effect for a hypothetical
wavelet and scale (dilation) factors of 1,2, and 4.

ψ̂(ω)

√
2ψ̂(2ω)

−ω0 ω0

√
4ψ̂(4ω)

−ω0
2

ω0
2

−ω0
4

ω0
4

1-27

1 Getting Started with Wavelet Toolbox™ Software

This depicts the CWT as a bandpass filtering of the input signal. CWT
coefficients at lower scales represent energy in the input signal at higher
frequencies, while CWT coefficients at higher scales represent energy in the
input signal at lower frequencies. However, unlike Fourier bandpass filtering,
the width of the bandpass filter in the CWT is inversely proportional to scale.
The width of the CWT filters decreases with increasing scale. This follows
from the uncertainty relationships between the time and frequency support of
a signal: the broader the support of a signal in time, the narrower its support
in frequency. The converse relationship also holds.

In the wavelet transform, the scale, or dilation operation is defined to
preserve energy. To preserve energy while shrinking the frequency support
requires that the peak energy level increases. The quality factor, or Q factor
of a filter is the ratio of its peak energy to bandwidth. Because shrinking
or stretching the frequency support of a wavelet results in commensurate
increases or decreases in its peak energy, wavelets are often referred to as
constant-Q filters.

DFT-Based Continuous Wavelet Transform
The equation in the preceding section defined the CWT as the inverse Fourier
transform of a product of Fourier transforms.

C a b f t t a a e df j b(, ; (), ()) () * ()


   




 


1

2

The time variable in the inverse Fourier transform is the translation
parameter, b.

This suggests that you can compute the CWT with the inverse Fourier
transform. Because there are efficient algorithms for the computation of the
discrete Fourier transform and its inverse, you can often achieve considerable
savings by using fft and ifft when possible.

To obtain a picture of the CWT in the Fourier domain, start with the definition
of the wavelet transform:

 


 f t t
a

f t dta b
t b
a

(), () () (),
* 

1

1-28

Continuous Wavelet Transform

If you define:

 a t
a

t a() (/)* 
1

you can rewrite the wavelet transform as

()() () ()f b f t b t dta a  



  

which explicitly expresses the CWT as a convolution.

To implement the discretized verion of the CWT, assume that the input
sequence is a length N vector, x[n]. The discrete version of the preceding
convolution is:

W b x n b na
n

N

a[[] []] 





0

1


To obtain the CWT, it appears you have to compute the convolution for each
value of the shift parameter, b, and repeat this process for each scale, a.

However, if the two sequences are circularly-extended (periodized to length
N), you can express the circular convolution as a product of discrete Fourier
transforms. The CWT is the inverse Fourier transform of the product

W b
N

a
t

k N t a k N t eXa
k

N
j kb N() (/) * (/) /





 

1 2
2 2

0

1
2

   


 

where Δt is the sampling interval (period).

Expressing the CWT as an inverse Fourier transform enables you to use
the computationally-efficient fft and ifft algorithms to reduce the cost
of computing convolutions.

The cwtft function implements the CWT using an FFT-based algorithm. See
cwtftinfo for information pertaining to the supported analyzing wavelets.

1-29

1 Getting Started with Wavelet Toolbox™ Software

Inverse Continuous Wavelet Transform
The icwtft function implements the inverse CWT. Using icwtft requires
that you obtain the CWT from cwtft. The Wavelet Toolbox does not support
the inverse CWT for a general CWT obtained using cwt.

Because the CWT is a redundant transform, there is not a unique way to
define the inverse. The inverse CWT implemented in the Wavelet Toolbox
utilizes a discrete version of the single integral formula due to Morlet.

The inverse CWT is classically presented in the double-integral form. Assume
you have a wavelet with a Fourier transform that satisfies the admissibility
condition:

C d
 


  








| ()|
| |

2

For wavelets satisfying the admissibility condition and finite-energy
functions, f(t), you can define the inverse CWT as:

f t
C

f t t t db
da

aba a b a b() (), () (), ,  
1

2


 

For analyzing wavelets and functions satisfying the following conditions, a
single integral formula for the inverse CWT exists. These conditions are:

• The analyzed function, f(t), is real-valued and the analyzing wavelet has a
real-valued Fourier transform.

• The analyzed function, f(t), is real-valued and the Fourier transform of the
analyzing wavelet has support only on the set of nonnegative frequencies.
This is referred to as an analytic wavelet. A function whose Fourier
transform only has support on the set of nonnegative frequencies must be
complex-valued.

The preceding conditions constrain the set of possible analyzing wavelets. If
you inspect the list of wavelets supported by cwtft, each wavelet is either
analytic or has a real-valued Fourier transform. Because the toolbox only

1-30

Continuous Wavelet Transform

supports the analysis of real-valued functions, the real-valued condition on
the analyzed function is always satisfied.

To motivate the single integral formula, let ψ1 and ψ2 be two wavelets that
satisfy the following two-wavelet admissibility condition:

| ()|| ()|
| |

*   


1 2

 

  d

Define the constant:

C d 
   




1 2

1 2
,

*() ()
| |



 



INote that the above constant may be complex-valued. Let f(t) and g(t) be two
finite energy functions. If the two-wavelet admissibility condition is satisfied,
the following equality holds:

C f g f g db da
a   

1 2 21 2,
*, , ,    

where < , > denotes the inner product, * denotes the complex conjugate, and
the dependence of ψ1 and ψ2 on scale and position has been suppressed for
convenience.

The key to the single integral formula for the inverse CWT is to recognize that
the two-wavelet admissibility condition can be satisfied even if one of the
wavelets is not admissible. In other words, it is not necessary that both ψ1
and ψ2 be separately admissible. You can also relax the requirements further
by allowing one of the functions and wavelets to be distributions. By first
letting g(t) be the Dirac delta function (a distribution) and also allowing ψ2
to be the Dirac delta function, you can derive the single integral formula
for the inverse CWT

f t Re
C

f t t
da

a
() { (), () }

,
/

  

2

1

1
0 1 3 2

 


where Re{ } denotes the real part.

1-31

1 Getting Started with Wavelet Toolbox™ Software

The preceding equation demonstrates that you can reconstruct the signal by
summing the scaled CWT coefficients over all scales.

By summing the scaled CWT coefficients from select scales, you obtain an
approximation to the original signal. This is useful in situations where your
phenomenon of interest is localized in scale.

icwtft implements a discretized version of the above integral.

Continuous Wavelet Transform Algorithm
The following outlines the basic algorithm for the CWT:

1 Take a wavelet and compare it to a section at the start of the original signal.

2 Calculate a number, C, that represents how closely correlated the wavelet is
with this section of the signal. The larger the number C is in absolute value,
the more the similarity. This follows from the fact the CWT coefficients are
calculated with an inner product. See “Inner Products” on page 1-11 for
more information on how inner products measure similarity. If the signal
energy and the wavelet energy are equal to one, C may be interpreted as
a correlation coefficient. Note that, in general, the signal energy does
not equal one and the CWT coefficients are not directly interpretable as
correlation coefficients.

As described in “Definition of the Continuous Wavelet Transform” on page
1-19, the CWT coefficients explicitly depend on the analyzing wavelet.
Therefore, the CWT coefficients are different when you compute the CWT
for the same signal using different wavelets.

3 Shift the wavelet to the right and repeat steps 1 and 2 until you’ve covered
the whole signal.

1-32

Continuous Wavelet Transform

4 Scale (stretch) the wavelet and repeat steps 1 through 3.

5 Repeat steps 1 through 4 for all scales.

Interpreting CWT Coefficients
Because the CWT is a redundant transform and the CWT coefficients depend
on the wavelet, it can be challenging to interpret the results.

To help you in interpreting CWT coefficients, it is best to start with a simple
signal to analyze and an analyzing wavelet with a simple structure.

A signal feature that wavelets are very good at detecting is a discontinuity,
or singularity. Abrupt transitions in signals result in wavelet coefficients
with large absolute values.

For the signal create a shifted impulse. The impulse occurs at point 500.

x = zeros(1000,1);
x(500) = 1;

For the wavelet, pick the Haar wavelet.

[~,psi,xval] = wavefun('haar',10);
plot(xval,psi); axis([0 1 -1.5 1.5]);
title('Haar Wavelet');

1-33

1 Getting Started with Wavelet Toolbox™ Software

To compute the CWT using the Haar wavelet at scales 1 to 128, enter:

CWTcoeffs = cwt(x,1:128,'haar');

CWTcoeffs is a 128-by-1000 matrix. Each row of the matrix contains the
CWT coefficients for one scale. There are 128 rows because the SCALES input
to cwt is 1:128. The column dimension of the matrix matches the length of
the input signal.

Recall that the CWT of a 1D signal is a function of the scale and position
parameters. To produce a plot of the CWT coefficients, plot position along the
x-axis, scale along the y-axis, and encode the magnitude, or size of the CWT
coefficients as color at each point in the x-y, or time-scale plane.

You can produce this plot using cwt with the optional input argument 'plot'.

cwt(x,1:128,'haar','plot');
colormap jet; colorbar;

1-34

Continuous Wavelet Transform

The preceding figure was modified with text labels to explicitly show which
colors indicate large and small CWT coefficients.

You can also plot the size of the CWT coefficients in 3D with

cwt(x,1:64,'haar','3Dplot'); colormap jet;

where the number of scales has been reduced to aid in visualization.

Examining the CWT of the shifted impulse signal, you can see that the set of
large CWT coefficients is concentrated in a narrow region in the time-scale
plane at small scales centered around point 500. As the scale increases, the set
of large CWT coefficients becomes wider, but remains centered around point
500. If you trace the border of this region, it resembles the following figure.

1-35

1 Getting Started with Wavelet Toolbox™ Software

This region is referred to as the cone of influence of the point t=500 for the
Haar wavelet. For a given point, the cone of influence shows you which CWT
coefficients are affected by the signal value at that point.

To understand the cone of influence, assume that you have a wavelet
supported on [-C, C]. Shifting the wavelet by b and scaling by a results in a
wavelet supported on [-Ca+b, Ca+b]. For the simple case of a shifted impulse,

 ()t − , the CWT coefficients are only nonzero in an interval around τ equal
to the support of the wavelet at each scale. You can see this by considering
the formal expression of the CWT of the shifted impulse.

C a b t t t
a

dt
a

t b
a

b
a

(, ; (), ()) () () ()* *       − = − =
−∞

∞ − −∫ 1 1

For the impulse, the CWT coefficients are equal to the conjugated,
time-reversed, and scaled wavelet as a function of the shift parameter, b. You
can see this by plotting the CWT coefficients for a select few scales.

subplot(311)
plot(CWTcoeffs(10,:)); title('Scale 10');
subplot(312)
plot(CWTcoeffs(50,:)); title('Scale 50');
subplot(313)
plot(CWTcoeffs(90,:)); title('Scale 90');

1-36

Continuous Wavelet Transform

The cone of influence depends on the wavelet. You can find and plot the cone
of influence for a specific wavelet with conofinf.

The next example features the superposition of two shifted impulses,

 () ()t t− + −300 500 . In this case, use the Daubechies’ extremal phase
wavelet with four vanishing moments, db4. The following figure shows the
cone of influence for the points 300 and 500 using the db4 wavelet.

Look at point 400 for scale 20. At that scale, you can see that neither cone
of influence overlaps the point 400. Therefore, you can expect that the CWT
coefficient will be zero at that point and scale. The signal is only nonzero
at two values, 300 and 500, and neither cone of influence for those values
includes the point 400 at scale 20. You can confirm this by entering:

x = zeros(1000,1);
x([300 500]) = 1;
CWTcoeffs = cwt(x,1:128,'db4');
plot(CWTcoeffs(20,:)); grid on;

1-37

1 Getting Started with Wavelet Toolbox™ Software

Next, look at the point 400 at scale 80. At scale 80, the cones of influence
for both points 300 and 500 include the point 400. Even though the signal
is zero at point 400, you obtain a nonzero CWT coefficient at that scale. The
CWT coefficient is nonzero because the support of the wavelet has become
sufficiently large at that scale to allow signal values 100 points above and
below to affect the CWT coefficient. You can confirm this by entering:

plot(CWTcoeffs(80,:));
grid on;

In the preceding example, the CWT coefficients became large in the vicinity
of an abrupt change in the signal. This ability to detect discontinuities is a
strength of the wavelet transform. The preceding example also demonstrated

1-38

Continuous Wavelet Transform

that the CWT coefficients localize the discontinuity best at small scales. At
small scales, the small support of the wavelet ensures that the singularity
only affects a small set of wavelet coefficients.

To demonstrate why the wavelet transform is so adept at detecting abrupt
changes in the signal, consider a shifted Heaviside, or unit step signal.

x = [zeros(500,1); ones(500,1)];
CWTcoeffs = cwt(x,1:64,'haar','plot'); colormap jet;

Similar to the shifted impulse example, the abrupt transition in the shifted
step function results in large CWT coefficients at the discontinuity. The
following figure illustrates why this occurs.

1-39

1 Getting Started with Wavelet Toolbox™ Software

A B C

In the preceding figure, the red function is the shifted unit step function. The
black functions labeled A, B, and C depict Haar wavelets at the same scale
but different positions. You can see that the CWT coefficients around position
A are zero. The signal is zero in that neighborhood and therefore the wavelet
transform is also zero because any wavelet integrates to zero.

Note the Haar wavelet centered around position B. The negative part of the
Haar wavelet overlaps with a region of the step function that is equal to 1.
The CWT coefficients are negative because the product of the Haar wavelet
and the unit step is a negative constant. Integrating over that area yields a
negative number.

Note the Haar wavelet centered around position C. Here the CWT coefficients
are zero. The step function is equal to one. The product of the wavelet with
the step function is equal to the wavelet. Integrating any wavelet over its
support is zero. This is the zero moment property of wavelets.

At position B, the Haar wavelet has already shifted into the nonzero portion
of the step function by 1/2 of its support. As soon as the support of the wavelet
intersects with the unity portion of the step function, the CWT coefficients
are nonzero. In fact, the situation illustrated in the previous figure coincides
with the CWT coefficients achieving their largest absolute value. This is
because the entire negative deflection of the wavelet oscillation overlaps with
the unity portion of the unit step while none of the positive deflection of the
wavelet does. Once the wavelet shifts to the point that the positive deflection
overlaps with the unit step, there will be some positive contribution to the

1-40

Continuous Wavelet Transform

integral. The wavelet coefficients are still negative (the negative portion of
the integral is larger in area), but they are smaller in absolute value than
those obtained at position B.

The following figure illustrates two other positions where the wavelet
intersects the unity portion of the unit step.

In the top figure, the wavelet has just begun to overlap with the unity portion
of the unit step. In this case, the CWT coefficients are negative, but not as
large in absolute value as those obtained at position B. In the bottom figure,
the wavelet has shifted past position B and the positive deflection of the
wavelet begins to contribute to the integral. The CWT coefficients are still
negative, but not as large in absolute value as those obtained at position B.

You can now visualize how the wavelet transform is able to detect
discontinuities. You can also visualize in this simple example exactly why the
CWT coefficients are negative in the CWT of the shifted unit step using the
Haar wavelet. Note that this behavior differs for other wavelets.

x = [zeros(500,1); ones(500,1)];

1-41

1 Getting Started with Wavelet Toolbox™ Software

CWTcoeffs = cwt(x,1:64,'haar','plot'); colormap jet;
% plot a few scales for visualization
subplot(311);
plot(CWTcoeffs(5,:)); title('Scale 5');
subplot(312);
plot(CWTcoeffs(10,:)); title('Scale 10');
subplot(313);
plot(CWTcoeffs(50,:)); title('Scale 50');

Next consider how the CWT represents smooth signals. Because sinusoidal
oscillations are a common phenomenon, this section examines how sinusoidal
oscillations in the signal affect the CWT coefficients. To begin, consider the
sym4 wavelet at a specific scale superimposed on a sine wave.

Recall that the CWT coefficients are obtained by computing the product of
the signal with the shifted and scaled analyzing wavelet and integrating
the result. The following figure shows the product of the wavelet and the
sinusoid from the preceding figure.

1-42

Continuous Wavelet Transform

You can see that integrating over this product produces a positive CWT
coefficient. That results because the oscillation in the wavelet approximately
matches a period of the sine wave. The wavelet is in phase with the sine wave.
The negative deflections of the wavelet approximately match the negative
deflections of the sine wave. The same is true of the positive deflections of
both the wavelet and sinusoid.

The following figure shifts the wavelet 1/2 of the period of the sine wave.

Examine the product of the shifted wavelet and the sinusoid.

1-43

1 Getting Started with Wavelet Toolbox™ Software

You can see that integrating over this product produces a negative CWT
coefficient. That results because the wavelet is 1/2 cycle out of phase with the
sine wave. The negative deflections of the wavelet approximately match the
positive deflections of the sine wave. The positive deflections of the wavelet
approximately match the negative deflections of the sinusoid.

Finally, shift the wavelet approximately one quarter cycle of the sine wave.

The following figure shows the product of the shifted wavelet and the sinusoid.

1-44

Continuous Wavelet Transform

Integrating over this product produces a CWT coefficient much smaller in
absolute value than either of the two previous examples. That results because
the negative deflection of the wavelet approximately aligns with a positive
deflection of the sine wave. Also, the main positive deflection of the wavelet
approximately aligns with a positive deflection of the sine wave. The resulting
product looks much more like a wavelet than the other two products. If it
looked exactly like a wavelet, the integral would be zero.

At scales where the oscillation in the wavelet occurs on either a much larger
or smaller scale than the period of the sine wave, you obtain CWT coefficients
near zero. The following figure illustrates the case where the wavelet
oscillates on a much smaller scale than the sinusoid.

1-45

1 Getting Started with Wavelet Toolbox™ Software

The product shown in the bottom pane closely resembles the analyzing
wavelet. Integrating this product results in a CWT coefficient near zero.

The following example constructs a 60-Hz sine wave and obtains the CWT
using the sym8 wavelet.

t = linspace(0,1,1000);
x = cos(2*pi*60*t);
CWTcoeffs = cwt(x,1:64,'sym8','plot'); colormap jet;

Note that the CWT coefficients are large in absolute value around scales 9
to 21. You can find the pseudo-frequencies corresponding to these scales
using the command:

freq = scal2frq(9:21,'sym8',1/1000);

Note that the CWT coefficients are large at scales near the frequency of the
sine wave. You can clearly see the sinusoidal pattern in the CWT coefficients
at these scales with the following code.

surf(CWTcoeffs); colormap jet;
shading('interp'); view(-60,12);

1-46

Continuous Wavelet Transform

The final example constructs a signal consisting of both abrupt transitions
and smooth oscillations. The signal is a 4-Hz sinusoid with two introduced
discontinuities.

N = 1024;
t = linspace(0,1,1024);
x = 4*sin(4*pi*t);
x = x - sign(t - .3) - sign(.72 - t);
plot(t,x); xlabel('t'); ylabel('x');
grid on;

Note the discontinuities near t=0.3 and t=0.7.

1-47

1 Getting Started with Wavelet Toolbox™ Software

Obtain and plot the CWT using the sym4 wavelet.

CWTcoeffs = cwt(x,1:180,'sym4');
imagesc(t,1:180,abs(CWTcoeffs));
colormap jet; axis xy;
xlabel('t'); ylabel('Scales');

Note that the CWT detects both the abrupt transitions and oscillations in the
signal. The abrupt transitions affect the CWT coefficients at all scales and
clearly separate themselves from smoother signal features at small scales. On
the other hand, the maxima and minima of the 2–Hz sinusoid are evident in
the CWT coefficients at large scales and not apparent at small scales.

The following general principles are important to keep in mind when
interpreting CWT coefficients.

• Cone of influence— Depending on the scale, the CWT coefficient at a
point can be affected by signal values at points far removed. You have
to take into account the support of the wavelet at specific scales. Use
conofinf to determine the cone of influence. Not all wavelets are equal in
their support. For example, the Haar wavelet has smaller support at all
scales than the sym4 wavelet.

• Detecting abrupt transitions— Wavelets are very useful for detecting
abrupt changes in a signal. Abrupt changes in a signal produce relatively
large wavelet coefficients (in absolute value) centered around the
discontinuity at all scales. Because of the support of the wavelet, the set

1-48

Continuous Wavelet Transform

of CWT coefficients affected by the singularity increases with increasing
scale. Recall this is the definition of the cone of influence. The most precise
localization of the discontinuity based on the CWT coefficients is obtained
at the smallest scales.

• Detecting smooth signal features— Smooth signal features produce
relatively large wavelet coefficients at scales where the oscillation in the
wavelet correlates best with the signal feature. For sinusoidal oscillations,
the CWT coefficients display an oscillatory pattern at scales where the
oscillation in the wavelet approximates the period of the sine wave.

Redundancy in the Continuous Wavelet Transform
Any signal processing performed on a computer using real-world data must be
performed on a discrete signal — that is, on a signal that has been measured
at discrete time. So what exactly is “continuous” about the CWT?

What’s “continuous” about the CWT, and what distinguishes it from the
discrete wavelet transform (to be discussed in the following section), is the set
of scales and positions at which it operates.

Unlike the discrete wavelet transform, the CWT can operate at every scale,
from that of the original signal up to some maximum scale that you determine
by trading off your need for detailed analysis with available computational
horsepower.

The CWT is also continuous in terms of shifting: during computation, the
analyzing wavelet is shifted smoothly over the full domain of the analyzed
function.

1-49

1 Getting Started with Wavelet Toolbox™ Software

Critically-Sampled Discrete Wavelet Transform
Calculating wavelet coefficients at every possible scale is a fair amount of
work, and it generates an awful lot of data. What if we choose only a subset of
scales and positions at which to make our calculations?

It turns out, rather remarkably, that if we choose scales and positions based
on powers of two — so-called dyadic scales and positions — then our analysis
will be much more efficient and just as accurate. We obtain such an analysis
from the discrete wavelet transform (DWT). For more information on DWT,
see “Algorithms” in the Wavelet Toolbox User’s Guide.

An efficient way to implement this scheme using filters was developed in 1988
by Mallat (see [Mal89] in “References” on page 1-71). The Mallat algorithm
is in fact a classical scheme known in the signal processing community as a
two-channel subband coder (see page 1 of the book Wavelets and Filter Banks,
by Strang and Nguyen [StrN96]).

This very practical filtering algorithm yields a fast wavelet transform — a
box into which a signal passes, and out of which wavelet coefficients quickly
emerge. Let’s examine this in more depth.

One-Stage Filtering: Approximations and Details
For many signals, the low-frequency content is the most important part. It is
what gives the signal its identity. The high-frequency content, on the other
hand, imparts flavor or nuance. Consider the human voice. If you remove
the high-frequency components, the voice sounds different, but you can still
tell what’s being said. However, if you remove enough of the low-frequency
components, you hear gibberish.

In wavelet analysis, we often speak of approximations and details. The
approximations are the high-scale, low-frequency components of the signal.
The details are the low-scale, high-frequency components.

The filtering process, at its most basic level, looks like this.

1-50

Critically-Sampled Discrete Wavelet Transform

The original signal, S, passes through two complementary filters and emerges
as two signals.

Unfortunately, if we actually perform this operation on a real digital signal,
we wind up with twice as much data as we started with. Suppose, for instance,
that the original signal S consists of 1000 samples of data. Then the resulting
signals will each have 1000 samples, for a total of 2000.

These signals A and D are interesting, but we get 2000 values instead of the
1000 we had. There exists a more subtle way to perform the decomposition
using wavelets. By looking carefully at the computation, we may keep
only one point out of two in each of the two 2000-length samples to get the
complete information. This is the notion of downsampling. We produce two
sequences called cA and cD.

The process on the right, which includes downsampling, produces DWT
coefficients.

To gain a better appreciation of this process, let’s perform a one-stage discrete
wavelet transform of a signal. Our signal will be a pure sinusoid with
high-frequency noise added to it.

1-51

1 Getting Started with Wavelet Toolbox™ Software

Here is our schematic diagram with real signals inserted into it.

The MATLAB code needed to generate s, cD, and cA is

s
= sin(20.*linspace(0,pi,1000)) + 0.5.*rand(1,1000);
[cA,cD] = dwt(s,'db2');

where db2 is the name of the wavelet we want to use for the analysis.

Notice that the detail coefficients cD are small and consist mainly of a
high-frequency noise, while the approximation coefficients cA contain much
less noise than does the original signal.

[length(cA) length(cD)]

ans =
501 501

You may observe that the actual lengths of the detail and approximation
coefficient vectors are slightly more than half the length of the original signal.
This has to do with the filtering process, which is implemented by convolving
the signal with a filter. The convolution “smears” the signal, introducing
several extra samples into the result.

1-52

Critically-Sampled Discrete Wavelet Transform

Multiple-Level Decomposition
The decomposition process can be iterated, with successive approximations
being decomposed in turn, so that one signal is broken down into many lower
resolution components. This is called the wavelet decomposition tree.

Looking at a signal’s wavelet decomposition tree can yield valuable
information.

Number of Levels
Since the analysis process is iterative, in theory it can be continued
indefinitely. In reality, the decomposition can proceed only until the
individual details consist of a single sample or pixel. In practice, you’ll select

1-53

1 Getting Started with Wavelet Toolbox™ Software

a suitable number of levels based on the nature of the signal, or on a suitable
criterion such as entropy (see “Choosing the Optimal Decomposition” in the
Wavelet Toolbox User’s Guide).

1-54

Critically-Sampled Wavelet Reconstruction

Critically-Sampled Wavelet Reconstruction
We’ve learned how the discrete wavelet transform can be used to analyze,
or decompose, signals and images. This process is called decomposition
or analysis. The other half of the story is how those components can be
assembled back into the original signal without loss of information. This
process is called reconstruction, or synthesis. The mathematical manipulation
that effects synthesis is called the inverse discrete wavelet transform (IDWT).

To synthesize a signal using Wavelet Toolbox software, we reconstruct it
from the wavelet coefficients.

Where wavelet analysis involves filtering and downsampling, the wavelet
reconstruction process consists of upsampling and filtering. Upsampling is
the process of lengthening a signal component by inserting zeros between
samples.

The toolbox includes commands, like idwt and waverec, that perform
single-level or multilevel reconstruction, respectively, on the components of
one-dimensional signals. These commands have their two-dimensional and
three-dimensional analogs, idwt2, waverec2, idwt3, and waverec3.

1-55

1 Getting Started with Wavelet Toolbox™ Software

Reconstruction Filters
The filtering part of the reconstruction process also bears some discussion,
because it is the choice of filters that is crucial in achieving perfect
reconstruction of the original signal.

The downsampling of the signal components performed during the
decomposition phase introduces a distortion called aliasing. It turns out that
by carefully choosing filters for the decomposition and reconstruction phases
that are closely related (but not identical), we can “cancel out” the effects of
aliasing.

A technical discussion of how to design these filters is available on page 347
of the book Wavelets and Filter Banks, by Strang and Nguyen. The low- and
high-pass decomposition filters (L and H), together with their associated
reconstruction filters (L' and H'), form a system of what is called quadrature
mirror filters:

Reconstructing Approximations and Details
We have seen that it is possible to reconstruct our original signal from the
coefficients of the approximations and details.

1-56

Critically-Sampled Wavelet Reconstruction

It is also possible to reconstruct the approximations and details themselves
from their coefficient vectors. As an example, let’s consider how we would
reconstruct the first-level approximation A1 from the coefficient vector cA1.

We pass the coefficient vector cA1 through the same process we used to
reconstruct the original signal. However, instead of combining it with
the level-one detail cD1, we feed in a vector of zeros in place of the detail
coefficients vector:

The process yields a reconstructed approximation A1, which has the same
length as the original signal S and which is a real approximation of it.

Similarly, we can reconstruct the first-level detail D1, using the analogous
process:

The reconstructed details and approximations are true constituents of the
original signal. In fact, we find when we combine them that

A1 + D1 = S.

Note that the coefficient vectors cA1 and cD1— because they were produced
by downsampling and are only half the length of the original signal — cannot

1-57

1 Getting Started with Wavelet Toolbox™ Software

directly be combined to reproduce the signal. It is necessary to reconstruct the
approximations and details before combining them.

Extending this technique to the components of a multilevel analysis, we find
that similar relationships hold for all the reconstructed signal constituents.
That is, there are several ways to reassemble the original signal:

Wavelets From Conjugate Mirror Filters
In the section “Reconstruction Filters” on page 1-56, we spoke of the
importance of choosing the right filters. In fact, the choice of filters not only
determines whether perfect reconstruction is possible, it also determines the
shape of the wavelet we use to perform the analysis.

To construct a wavelet of some practical utility, you seldom start by drawing a
waveform. Instead, it usually makes more sense to design the appropriate
quadrature mirror filters, and then use them to create the waveform. Let’s
see how this is done by focusing on an example.

Consider the low-pass reconstruction filter (L') for the db2 wavelet.

The filter coefficients can be obtained from the dbaux function. By reversing
the order of the scaling filter vector and multiplying every even element
(indexing from 1) by (-1), you obtain the high-pass filter.

Repeatedly upsampling by two and convolving the output with the scaling
filter produces the Daubechies’ extremal phase wavelet.

L = dbaux(2);
H = wrev(L).*[1 -1 1 -1];
HU = dyadup(H,0);

1-58

Critically-Sampled Wavelet Reconstruction

HU = conv(HU,L);
plot(HU); title('1st Iteration');
H1 = conv(dyadup(HU,0),L);
H2 = conv(dyadup(H1,0),L);
H3 = conv(dyadup(H2,0),L);
H4 = conv(dyadup(H3,0),L);
figure;
for k =1:4
subplot(2,2,k);
eval(['plot(H' num2str(k) ')']);
axis tight;
end

The curve begins to look progressively more like the db2 wavelet. This means
that the wavelet’s shape is determined entirely by the coefficients of the
reconstruction filters.

This relationship has profound implications. It means that you cannot choose
just any shape, call it a wavelet, and perform an analysis. At least, you can’t
choose an arbitrary wavelet waveform if you want to be able to reconstruct the
original signal accurately. You are compelled to choose a shape determined by
quadrature mirror decomposition filters.

1-59

1 Getting Started with Wavelet Toolbox™ Software

Scaling Function
We’ve seen the interrelation of wavelets and quadrature mirror filters. The
wavelet function ψ is determined by the high-pass filter, which also produces
the details of the wavelet decomposition.

There is an additional function associated with some, but not all, wavelets.
This is the so-called scaling function, ϕ. The scaling function is very similar
to the wavelet function. It is determined by the low-pass quadrature mirror
filters, and thus is associated with the approximations of the wavelet
decomposition.

In the same way that iteratively upsampling and convolving the
high-pass filter produces a shape approximating the wavelet function,
iteratively upsampling and convolving the low-pass filter produces a shape
approximating the scaling function.

1-60

Wavelet Packet Analysis

Wavelet Packet Analysis
The wavelet packet method is a generalization of wavelet decomposition that
offers a richer range of possibilities for signal analysis.

In wavelet analysis, a signal is split into an approximation and a detail.
The approximation is then itself split into a second-level approximation and
detail, and the process is repeated. For an n-level decomposition, there are
n+1 possible ways to decompose or encode the signal.

In wavelet packet analysis, the details as well as the approximations can
be split.

This yields more than 22 1n−
different ways to encode the signal. This is the

wavelet packet decomposition tree.

The wavelet decomposition tree is a part of this complete binary tree.

1-61

1 Getting Started with Wavelet Toolbox™ Software

For instance, wavelet packet analysis allows the signal S to be represented as
A1 + AAD3 + DAD3 + DD2. This is an example of a representation that is not
possible with ordinary wavelet analysis.

Choosing one out of all these possible encodings presents an interesting
problem. In this toolbox, we use an entropy-based criterion to select the
most suitable decomposition of a given signal. This means we look at each
node of the decomposition tree and quantify the information to be gained by
performing each split.

Simple and efficient algorithms exist for both wavelet packet decomposition
and optimal decomposition selection. This toolbox uses an adaptive filtering
algorithm, based on work by Coifman and Wickerhauser (see [CoiW92] in
“References” on page 1-71), with direct applications in optimal signal coding
and data compression.

Such algorithms allow the Wavelet Packet 1-D and Wavelet Packet 2-D
tools to include “Best Level” and “Best Tree” features that optimize the
decomposition both globally and with respect to each node.

1-62

Introduction to Wavelet Families

Introduction to Wavelet Families
Several families of wavelets that have proven to be especially useful are
included in this toolbox. What follows is an introduction to some wavelet
families.

• “Haar” on page 1-64

• “Daubechies” on page 1-65

• “Biorthogonal” on page 1-65

• “Coiflets” on page 1-67

• “Symlets” on page 1-67

• “Morlet” on page 1-68

• “Mexican Hat” on page 1-68

• “Meyer” on page 1-69

• “Other Real Wavelets” on page 1-69

• “Complex Wavelets” on page 1-69

To explore all wavelet families on your own, check out the Wavelet Display
tool:

1 Type wavemenu at the MATLAB command line. The Wavelet Toolbox
Main Menu appears.

1-63

1 Getting Started with Wavelet Toolbox™ Software

2 Click the Wavelet Display menu item. The Wavelet Display tool
appears.

3 Select a family from theWavelet menu at the top right of the tool.

4 Click the Display button. Pictures of the wavelets and their associated
filters appear.

5 Obtain more information by clicking the information buttons located at
the right.

Haar
Any discussion of wavelets begins with Haar wavelet, the first and simplest.
The Haar wavelet is discontinuous, and resembles a step function. It
represents the same wavelet as Daubechies db1.

1-64

Introduction to Wavelet Families

Daubechies
Ingrid Daubechies, one of the brightest stars in the world of wavelet research,
invented what are called compactly supported orthonormal wavelets — thus
making discrete wavelet analysis practicable.

The names of the Daubechies family wavelets are written dbN, where N is the
order, and db the “surname” of the wavelet. The db1 wavelet, as mentioned
above, is the same as Haar wavelet. Here are the wavelet functions psi of
the next nine members of the family:

You can obtain a survey of the main properties of this family by typing
waveinfo('db') from the MATLAB command line. See “Daubechies
Wavelets: dbN” in the Wavelet Toolbox User’s Guide for more detail.

Biorthogonal
This family of wavelets exhibits the property of linear phase, which is
needed for signal and image reconstruction. By using two wavelets, one for

1-65

1 Getting Started with Wavelet Toolbox™ Software

decomposition (on the left side) and the other for reconstruction (on the right
side) instead of the same single one, interesting properties are derived.

1-66

Introduction to Wavelet Families

You can obtain a survey of the main properties of this family by typing
waveinfo('bior') from the MATLAB command line. See “Biorthogonal
Wavelet Pairs: biorNr.Nd” in theWavelet Toolbox User’s Guide for more detail.

Coiflets
Built by I. Daubechies at the request of R. Coifman. The wavelet function has
2N moments equal to 0 and the scaling function has 2N-1 moments equal to
0. The two functions have a support of length 6N-1. You can obtain a survey
of the main properties of this family by typing waveinfo('coif') from the
MATLAB command line. See “Coiflet Wavelets: coifN” in the Wavelet Toolbox
User’s Guide for more detail.

Symlets
The symlets are nearly symmetrical wavelets proposed by Daubechies as
modifications to the db family. The properties of the two wavelet families are
similar. Here are the wavelet functions psi.

1-67

1 Getting Started with Wavelet Toolbox™ Software

You can obtain a survey of the main properties of this family by typing
waveinfo('sym') from the MATLAB command line. See “Symlet Wavelets:
symN” in the Wavelet Toolbox User’s Guide for more detail.

Morlet
This wavelet has no scaling function, but is explicit.

You can obtain a survey of the main properties of this family by typing
waveinfo('morl') from the MATLAB command line. See “Morlet Wavelet:
morl” in the Wavelet Toolbox User’s Guide for more detail.

Mexican Hat
This wavelet has no scaling function and is derived from a function that is
proportional to the second derivative function of the Gaussian probability
density function.

1-68

Introduction to Wavelet Families

You can obtain a survey of the main properties of this family by typing
waveinfo('mexh') from the MATLAB command line. See “Mexican Hat
Wavelet: mexh” in the Wavelet Toolbox User’s Guide for more information.

Meyer
The Meyer wavelet and scaling function are defined in the frequency domain.

You can obtain a survey of the main properties of this family by typing
waveinfo('meyer') from the MATLAB command line. See “Meyer Wavelet:
meyr” in the Wavelet Toolbox User’s Guide for more detail.

Other Real Wavelets
Some other real wavelets are available in the toolbox:

• Reverse Biorthogonal

• Gaussian derivatives family

• FIR based approximation of the Meyer wavelet

See “Additional Real Wavelets” in the Wavelet Toolbox User’s Guide for more
information.

Complex Wavelets
Some complex wavelet families are available in the toolbox:

1-69

1 Getting Started with Wavelet Toolbox™ Software

• Gaussian derivatives

• Morlet

• Frequency B-Spline

• Shannon

See “Complex Wavelets” in the Wavelet Toolbox User’s Guide for more
information.

1-70

References

References
[Abr97] Abry, P. (1997), Ondelettes et turbulence. Multirésolutions,
algorithmes de décomposition, invariance d’échelles, Diderot Editeur, Paris.

[Abr03] Abry, P., P. Flandrin, M.S. Taqqu, D. Veitch (2003), “Self-similarity
and long-range dependence through the wavelet lens,” Theory and
applications of long-range dependence, Birkhäuser, pp. 527–556.

[Ant94] Antoniadis, A. (1994), “Smoothing noisy data with coiflets,” Statistica
Sinica 4 (2), pp. 651–678.

[AntO95] Antoniadis, A., G. Oppenheim, Eds. (1995), Wavelets and statistics,
Lecture Notes in Statistics 103, Springer Verlag.

[AntP98] Antoniadis A., D.T. Pham (1998), “Wavelet regression for random
or irregular design,” Comp. Stat. and Data Analysis, 28, pp. 353–369.

[AntG99] Antoniadis, A., G. Gregoire (1999), “Density and Hazard rate
estimation for right-censored data using wavelet methods,” J. R. Statist. Soc.
B, 61, 1, pp. 63–84.

[ArnABEM95] Arneodo, A., F. Argoul, E. Bacry, J. Elezgaray, J.F. Muzy
(1995), Ondelettes, multifractales et turbulence, Diderot Editeur, Paris.

[Bak95] Bakshi, B. (1998), “Multiscale PCA with application to MSPC
monitoring,” AIChE J. 44, pp. 1596–1610.

[BarJM03] Bardet, J.-M., G. Lang, G. Oppenheim, A. Philippe, S. Stoev, M.S.
Taqqu (2003), “Generators of long-range dependence processes: a survey”
Theory and applications of long-range dependence, Birkhäuser Boston,
pp. 579–623.

[BirM97] Birgé, L., P. Massart (1997), “From model selection to adaptive
estimation,” in D. Pollard (ed.), Festchrift for L. Le Cam, Springer, pp. 55–88.

[Bri95] Brislawn, C.M. (1995), “Fingerprints to digital,” Notices of the AMS.
Vol. 42, pp. 1278–1283.

1-71

1 Getting Started with Wavelet Toolbox™ Software

[Bur96] Burke Hubbard, B. (1996), The world according to wavelets,
AK Peters, Wellesley. The French original version is titled Ondes et
Ondelettes. La saga d’un outil mathématique, Pour la Science, (1995).

[Chr06] Christophe, E., C. Mailhes, P. Duhamel (2006), “Adaptation of
zerotrees using signed binary digit representations for 3 dimensional image
coding,” EURASIP Journal on Image and Video Processing, 2007, to appear
in the special issue on Wavelets in Source Coding, Communications, and
Networks, Paper ID 54679.

[Chu92a] Chui, C.K. (1992a), Wavelets: a tutorial in theory and applications,
Academic Press.

[Chu92b] Chui, C.K. (1992b), An introduction to wavelets, Academic Press.

[Coh92] Cohen, A. (1992), “Ondelettes, analyses multirésolution et traitement
numérique du signal,” Ph.D. thesis, University of Paris IX, Dauphine.

[Coh95] Cohen, A. (1995), Wavelets and multiscale signal processing,
Chapman and Hall.

[CohDF92] Cohen, A., I. Daubechies, J.C. Feauveau (1992), “Biorthogonal
basis of compactly supported wavelets,” Comm. Pure Appli. Math. , vol. 45,
pp. 485–560.

[CohDJV93] Cohen, A., I. Daubechies, B. Jawerth, P. Vial (1993),
“Multiresolution analysis, wavelets and fast wavelet transform on an
interval,” CRAS Paris, Ser. A, t. 316, pp. 417–421.

[CoiD95] Coifman, R.R., D.L. Donoho (1995), “Translation invariant
de-noising,” Lecture Notes in Statistics, 103, pp. 125–150.

[CoiMW92] Coifman, R.R., Y. Meyer, M.V. Wickerhauser (1992), “Wavelet
analysis and signal processing,” in Wavelets and their applications,
M.B. Ruskai et al. (Eds.), pp. 153–178, Jones and Bartlett.

[CoiW92] Coifman, R.R., M.V Wickerhauser (1992), “Entropy-based
algorithms for best basis selection,” IEEE Trans. on Inf. Theory, vol. 38,
2, pp. 713–718.

1-72

References

[Dau92] Daubechies, I. (1992), Ten lectures on wavelets, SIAM.

[DevJL92] DeVore, R.A., B. Jawerth, B.J. Lucier (1992), “Image compression
through wavelet transform coding,” IEEE Trans. on Inf. Theory, vol. 38,
2, pp. 719–746.

[Don93] Donoho, D.L. (1993), “Progress in wavelet analysis and WVD: a ten
minute tour,” in Progress in wavelet analysis and applications, Y. Meyer,
S. Roques, pp. 109–128. Frontières Ed.

[Don95] Donoho, D.L. (1995), “De-Noising by soft-thresholding,” IEEE Trans.
on Inf. Theory, vol. 41, 3, pp. 613–627.

[DonJ94a] Donoho, D.L., I.M. Johnstone (1994),“Ideal spatial adaptation by
wavelet shrinkage,” Biometrika, vol. 81, pp. 425–455.

[DonJ94b] Donoho, D.L., I.M. Johnstone (1994), “Ideal de-noising in an
orthonormal basis chosen from a library of bases,” CRAS Paris, Ser I, t. 319,
pp. 1317–1322.

[DonJKP95] Donoho, D.L., I.M. Johnstone, G. Kerkyacharian, D. Picard
(1995), “Wavelet shrinkage: asymptopia,” Jour. Roy. Stat. Soc., series B,
vol. 57, no. 2, pp. 301–369.

[DonJKP96] Donoho, D.L., I.M. Johnstone, G. Kerkyacharian, D. Picard
(1996), “Density estimation by wavelet thesholding,” Annals of Stat., 24,
pp. 508–539.

[Fla92] Flandrin, P. (1992), “Wavelet analysis and synthesis of fractional
Brownian motion,” IEEE Trans. on Inf. Th., 38, pp. 910–917.

[HalPKP97] Hall, P., S. Penev, G. Kerkyacharian, D. Picard (1997),
“Numerical performance of block thresholded wavelet estimators,” Stat. and
Computing, 7, pp. 115–124.

[HarKPT98] Hardle, W., G. Kerkyacharian, D. Picard, A. Tsybakov (1998),
Wavelets, approximation and statistical applications, Lecture Notes in
Statistics, 129, Springer Verlag.

1-73

1 Getting Started with Wavelet Toolbox™ Software

[Ist94] Istas, J., G. Lang (1994), “Quadratic variations and estimation of
the local Hölder index of a Gaussian process,” Ann. Inst. Poincaré, 33, pp.
407–436.

[KahL95] Kahane, J.P., P.G Lemarié (1995), Fourier series and wavelets,
Gordon and Research Publishers, Studies in the Development of Modern
Mathematics, vol 3.

[Kai94] Kaiser, G. (1994), A friendly guide to wavelets, Birkhäuser.

[Lav99] Lavielle, M. (1999), “Detection of multiple changes in a sequence of
dependent variables,” Stoch. Proc. and their Applications, 83, 2, pp. 79–102.

[Lem90] Lemarié, P.G., Ed., (1990), Les ondelettes en 1989, Lecture Notes in
Mathematics, Springer Verlag.

[Mal89] Mallat, S. (1989), “A theory for multiresolution signal decomposition:
the wavelet representation,” IEEE Pattern Anal. and Machine Intell., vol.
11, no. 7, pp. 674–693.

[Mal98]Mallat, S. (1998), A wavelet tour of signal processing, Academic Press.

[Mey90] Meyer, Y. (1990), Ondelettes et opéateurs, Tome 1, Hermann Ed.
(English translation: Wavelets and operators), Cambridge Univ. Press, 1993.

[Mey93] Meyer, Y. (1993), Les ondelettes. Algorithmes et applications, Colin
Ed., Paris, 2nd edition. (English translation: Wavelets: algorithms and
applications, SIAM).

[MeyR93]Meyer, Y., S. Roques, Eds. (1993), Progress in wavelet analysis and
applications, Frontières Ed.

[MisMOP93a] Misiti, M., Y. Misiti, G. Oppenheim, J.M. Poggi (1993a),
“Analyse de signaux classiques par décomposition en ondelettes,” Revue de
Statistique Appliquée, vol. XLI, no. 4, pp. 5–32.

[MisMOP93b] Misiti, M., Y. Misiti, G. Oppenheim, J.M. Poggi (1993b),
“Ondelettes en statistique et traitement du signal,” Revue de Statistique
Appliquée, vol. XLI, no. 4, pp. 33–43.

1-74

References

[MisMOP94] Misiti, M., Y. Misiti, G. Oppenheim, J.M. Poggi (1994),
“Décomposition en ondelettes et méthodes comparatives: étude d’une courbe
de charge électrique,” Revue de Statistique Appliquée, vol. XLII, no. 2, pp.
57–77.

[MisMOP03] Misiti, M., Y. Misiti, G. Oppenheim, J.-M. Poggi (2003), “Les
ondelettes et leurs applications,” Hermes.

[MisMOP07] Misiti, M., Y. Misiti, G. Oppenheim, J.-M. Poggi (2007),
Wavelets and their applications, ISTE DSP Series.

[NasS95] Nason, G.P., B.W. Silverman (1995), “The stationary wavelet
transform and some statistical applications,” Lecture Notes in Statistics, 103,
pp. 281–299.

[Ogd97] Ogden, R.T. (1997), Essential wavelets for statistical applications
and data analysis, Birkhäuser.

[PesKC96] Pesquet, J.C., H. Krim, H. Carfatan (1996), “Time-invariant
orthonormal wavelet representations,” IEEE Trans. Sign. Proc., vol. 44,
8, pp. 1964–1970.

[Sai96] Said A., W.A. Pearlman (1996), “A new, fast, and efficient image
codec based on set partitioning in hierarchical trees,” IEEE Trans. on Circuits
and Systems for Video Technology, Vol. 6, No. 3, pp. 243–250.

[Sha93] Shapiro J.M. (1993), “Embedded image coding using zerotrees
of wavelet coefficients,” IEEE Trans. Signal Proc., Vol. 41, No. 12,
pp. 3445–3462.

[StrN96] Strang, G., T. Nguyen (1996), Wavelets and filter banks,
Wellesley-Cambridge Press.

[Swe98] Sweldens, W. (1998), “The Lifting Scheme: a Construction of Second
Generation of Wavelets,” SIAM J. Math. Anal., 29 (2), pp. 511–546.

[Teo98] Teolis, A. (1998), Computational signal processing with wavelets,
Birkhäuser.

1-75

1 Getting Started with Wavelet Toolbox™ Software

[VetK95] Vetterli, M., J. Kovacevic (1995), Wavelets and subband coding,
Prentice Hall.

[Wal99]Walker, J.S. (1999), “Wavelet-Based Image Compression,” University
of Wisconsin, Eau Claire, Wisconsin, USA, , Sub-chapter of CRC Press book:
Transform and Data Compression. A Primer on Wavelets and Their Scientific
Applications. A second edition is published in 2008.

[Wic91] Wickerhauser, M.V. (1991), “INRIA lectures on wavelet packet
algorithms,” Proceedings ondelettes et paquets d’ondes, 17–21 June,
Rocquencourt France, pp. 31–99.

[Wic91] Wickerhauser, M.V. (1991), “INRIA lectures on wavelet packet
algorithms,” Proceedings ondelettes et paquets d’ondes, 17–21 June,
Rocquencourt France, pp. 31–99.

[Wic94] Wickerhauser, M.V. (1994), Adapted wavelet analysis from theory
to software algorithms, A.K. Peters.

[Zee98] Zeeuw, P.M. (1998), “Wavelet and image fusion,” CWI, Amsterdam,
March 1998, http:/www.cwi.nl/~pauldz/

1-76

2

Using Wavelets

This chapter takes you step-by-step through examples that teach you how to
use the graphical tools and command-line functions.

• “Introduction to Wavelet Toolbox GUIs and Functions” on page 2-2

• “Wavelets: Working with Images” on page 2-3

• “One-Dimensional Wavelet Density Estimation” on page 2-10

• “Interactive 1-D Wavelet Coefficient Selection” on page 2-16

• “Interactive 2-D Wavelet Coefficient Selection” on page 2-25

• “One-Dimensional Extension” on page 2-32

• “Two-Dimensional Extension” on page 2-39

• “Image Fusion” on page 2-42

• “One-Dimensional Fractional Brownian Motion Synthesis” on page 2-50

• “New Wavelet for CWT” on page 2-56

2 Using Wavelets

Introduction to Wavelet Toolbox GUIs and Functions
Wavelet Toolbox software contains graphical tools and command-line
functions that let you

• Examine and explore properties of individual wavelets and wavelet packets

• Examine statistics of signals and signal components

• Perform a continuous wavelet transform of a one-dimensional signal

• Perform discrete analysis and synthesis of one- and two-dimensional
signals

• Perform wavelet packet analysis of one- and two-dimensional signals

• Compress and remove noise from signals and images

In addition to the above, the toolbox makes it easy to customize the
presentation and visualization of your data. You choose

• Which signals to display

• A region of interest to magnify

• A coloring scheme for display of wavelet coefficient details

Note All the graphical user interface tools described in this chapter let
you import information from and export information to either the disk or
workspace.

2-2

Wavelets: Working with Images

Wavelets: Working with Images
This section provides additional information about working with images in
the Wavelet Toolbox software. It describes the types of supported images
and how the MATLAB environment represents them, as well as techniques
for analyzing color images.

Understanding Images in the MATLAB Environment
The basic data structure in MATLAB is the rectangular matrix, an ordered
set of real or complex elements. This object is naturally suited to the
representation of images, which are real-valued, ordered sets of color or
intensity data. (This toolbox does not support complex-valued images.)

The word pixel is derived from picture element and usually denotes a single
dot on a computer display, or a single element in an image matrix. You can
select a single pixel from an image matrix using normal matrix subscripting.
For example:

I(2,15)

returns the value of the pixel at row 2 and column 15 of the image I. By
default, MATLAB scales images to fill the display axes; therefore, an image
pixel may use more than a single pixel on the screen.

Indexed Images
A typical color image requires two matrices: a colormap and an image matrix.
The colormap is an ordered set of values that represent the colors in the
image. For each image pixel, the image matrix contains a corresponding index
into the colormap. (The elements of the image matrix are floating-point
integers, or flints, which MATLAB stores as double-precision values.)

The size of the colormap matrix is n-by-3 for an image containing n colors.
Each row of the colormap matrix is a 1-by-3 red, green, blue (RGB) color vector

color = [R G B]

that specifies the intensity of the red, green, and blue components of that
color. R, G, and B are real scalars that range from 0.0 (black) to 1.0 (full

2-3

2 Using Wavelets

intensity). MATLAB translates these values into display intensities when you
display an image and its colormap.

When MATLAB displays an indexed image, it uses the values in the image
matrix to look up the desired color in the colormap. For instance, if the image
matrix contains the value 18 in matrix location (86,198), the color for pixel
(86,198) is the color from row 18 of the colormap.

Outside MATLAB, indexed images with n colors often contain values from
0 to n–1. These values are indices into a colormap with 0 as its first index.
Since MATLAB matrices start with index 1, you must increment each value in
the image, or shift up the image, to create an image that you can manipulate
with toolbox functions.

2-4

Wavelets: Working with Images

Wavelet Decomposition of Indexed Images
Indexed images can be thought of as scaled intensity images, with matrix
elements containing only integers from 1 to n, where n is the number of
discrete shades in the image.

If the colormap is not provided, the graphical user interface tools display
the image and processing results using a monotonic colormap with
max(max(X))-min(min(X))+1 colors.

Since the image colormap is only used for display purposes, some indexed
images may need to be preprocessed to achieve the correct results from the
wavelet decomposition.

In general, color indexed images do not have linear, monotonic colormaps
and need to be converted to the appropriate gray-scale indexed image before
performing a wavelet decomposition.

How Decompositions Are Displayed
Note that the coefficients, approximations, and details produced by wavelet
decomposition are not indexed image matrices.

To display these images in a suitable way, the graphical user interface tools
follow these rules:

• Reconstructed approximations are displayed using the colormap map.

• The coefficients and the reconstructed details are displayed using the
colormap map applied to a rescaled version of the matrices.

RGB (Truecolor) Images
An RGB image, sometimes referred to as a truecolor image, is stored in
MATLAB as an m-by-n-by-3 data array that defines red, green, and blue color
components for each individual pixel. RGB images do not use a palette. The
color of each pixel is determined by the combination of the red, green, and
blue intensities stored in each color plane at the pixel’s location. Graphics file
formats store RGB images as 24-bit images, where the red, green, and blue
components are 8 bits each. This yields a potential of 16 million colors.

2-5

2 Using Wavelets

The precision with which a real-life image can be replicated led to the
nickname “truecolor image.” An RGB MATLAB array can be of class double,
single, uint8, or uint16. In an RGB array of class double, each color
component is a value between 0 and 1.

The color components of an 8-bit RGB image are integers in the range [0, 255]
rather than floating-point values in the range [0, 1].

Wavelet Decomposition of Truecolor Images
The truecolor images analyzed are m-by-n-by-3 arrays of uint8. Each
of the three-color components is a matrix that is decomposed using the
two-dimensional wavelet decomposition scheme.

Other Images
Wavelet Toolbox software lets you work with some other types of images.
Using the imread function, the various tools using images try to load indexed
images from files that are not MAT files (for example, PCX files).

These tools are:

• Two-Dimensional Discrete Wavelet Analysis

• Two-Dimensional Wavelet Packet Analysis

• Two-Dimensional Stationary Wavelet Analysis

• Two-Dimensional Extension tool

For more information on the supported file types, type help imread.

Use the imfinfo function to find the type of image stored in the file. If the file
does not contain an indexed image, the load operation fails.

Image Conversion
Image Processing Toolbox software provides a comprehensive set of functions
that let you easily convert between image types. If you do not have Image
Processing Toolbox software, the examples below demonstrate how this
conversion may be performed using basic MATLAB commands.

2-6

Wavelets: Working with Images

Example 1: Converting Color Indexed Images

load xpmndrll
whos

Name Size Bytes Class

X2 192x200 307200 double array

map 64x3 1536 double array

image(X2)
title('Original Color Indexed Image')
colormap(map); colorbar

The color bar to the right of the image is not smooth and does not
monotonically progress from dark to light. This type of indexed image is
not suitable for direct wavelet decomposition with the toolbox and needs to
be preprocessed.

First, separate the color indexed image into its RGB components:

R = map(X2,1); R = reshape(R,size(X2));

2-7

2 Using Wavelets

G = map(X2,2); G = reshape(G,size(X2));
B = map(X2,3); B = reshape(B,size(X2));

Next, convert the RGB matrices into a gray-scale intensity image, using the
standard perceptual weightings for the three-color components:

Xrgb = 0.2990*R + 0.5870*G + 0.1140*B;

Then, convert the gray-scale intensity image back to a gray-scale indexed
image with 64 distinct levels and create a new colormap with 64 levels of gray:

n = 64; % Number of shades in new indexed image
X = round(Xrgb*(n-1)) + 1;
map2 = gray(n);
figure
image(X), title('Processed
Gray Scale Indexed Image')
colormap(map2), colorbar

The color bar of the converted image is now linear and has a smooth transition
from dark to light. The image is now suitable for wavelet decomposition.

2-8

Wavelets: Working with Images

Finally, save the converted image in a form compatible with the Wavelet
Toolbox graphical user interface:

baboon = X;
map = map2;
save baboon baboon map

Example 2: Converting an RGB TIF Image
Suppose the file myImage.tif contains an RGB image (noncompressed) of size
S1xS2. Use the following commands to convert this image:

A = imread('myImage.tif');
% A is an S1xS2x3 array of uint8.

A = double(A);
Xrgb = 0.2990*A(:,:,1) + 0.5870*A(:,:,2) + 0.1140*A(:,:,3);
NbColors = 255;
X = wcodemat(Xrgb,NbColors);
map = pink(NbColors);

The same program can be used to convert BMP or JPEG files.

2-9

2 Using Wavelets

One-Dimensional Wavelet Density Estimation
This section takes you through the features of one-dimensional wavelet
density estimation using one of the Wavelet Toolbox specialized tools.

The toolbox provides a graphical interface tool to estimate the density of a
sample and complement well known tools like the histogram (available from
the MATLAB core) or kernel based estimates.

For the examples in this section, switch the extension mode to symmetric
padding, using the command

dwtmode('sym')

One-Dimensional Estimation Using the Graphical
Interface

1 Start the Density Estimation 1-D Tool.

From the MATLAB prompt, type

wavemenu

The Wavelet Toolbox Main Menu appears.

2-10

One-Dimensional Wavelet Density Estimation

Click the Density Estimation 1-D menu item. The discrete wavelet
analysis tool for one-dimensional density estimation appears.

2-11

2 Using Wavelets

2 Load data.

From the File menu, choose the Load > Data for Density Estimate
option.

When the Load data for Density Estimate dialog box appears,
select the MAT-file ex1cusp1.mat from the MATLAB folder
toolbox/wavelet/wavedemo. Click OK. The noisy cusp data is loaded into
the Density Estimation 1-D tool.

The sample, a 64-bin histogram, and the processed data obtained after a
binning are displayed. In this example, we’ll accept the default value for
the number of bins (250). The binned data, suitably normalized, will be
processed by wavelet decomposition.

3 Perform a Wavelet Decomposition of the binned data.

Select the sym6 wavelet from the Wavelet menu and select 4 from
the Level menu, and click the Decompose button. After a pause for

2-12

One-Dimensional Wavelet Density Estimation

computation, the tool displays the detail coefficients of the decomposition of
the binned data.

4 Perform a density estimation.

Accept the defaults of global soft thresholding. The sliders located on the
right of the window control the level dependent thresholds, indicated by
yellow dotted lines running horizontally through the graphs on the left of
the window.

Continue by clicking the Estimate button.

You can see that the estimation process delivers a very irregular resulting
density. The density estimate (in yellow) is the normalized sum of the
signals located below it: the approximation a4 and the reconstructed
details after coefficient thresholding.

5 Perform thresholding.

You can experiment with the various predefined thresholding strategies by
selecting the appropriate options from the menu located on the right of the
window or directly by dragging the yellow lines with the left mouse button.
Let’s try another estimation method.

2-13

2 Using Wavelets

From the menu Select thresholding method, select the item By level
threshold 2. Next, click the Estimate button.

The estimated density is more satisfactory. It correctly identifies the
smooth part of the density and the cusp at 0.7.

Importing and Exporting Information from the
Graphical Interface
The tool lets you save the estimated density to disk. The toolbox creates a
MAT-file in the current folder with a name you choose.

To save the estimated density, use the menu option File > Save Density. A
dialog box appears that lets you specify a folder and filename for storing the
density. Type the name dex1cusp. After saving the density data to the file
dex1cusp.mat, load the variables into your workspace:

load dex1cusp
whos

Name Size Bytes Class

thrParams 1x4 464 cell array

wname 1x4 8 char array

2-14

One-Dimensional Wavelet Density Estimation

Name Size Bytes Class

xdata 1x250 2000 double array

ydata 1x250 2000 double array

The estimated density is given by xdata and ydata. The length of these
vectors is of the same as the number of bins you choose in step 4. In addition,
the parameters of the estimation process are given by the wavelet name in
wname.

wname

wname =
sym6

and the level dependent thresholds contained in thrParams, which is a
cell array of length 4 (the level of the decomposition). For i from 1 to
4, thrParams{i} contains the lower and upper bounds of the interval of
thresholding and the threshold value (since interval dependent thresholds are
allowed). For more information, see “One-Dimensional Adaptive Thresholding
of Wavelet Coefficients”. For example, for level 1,

thrParams{1}
ans =

0.0560 0.9870 2.1179

Note When you load data from a file using the menu option File > Load Data
for Density Estimate, the first one-dimensional variable encountered in the
file is considered the signal. Variables are inspected in alphabetical order.

At the end of this section, turn the extension mode back to zero padding using

dwtmode('zpd')

2-15

2 Using Wavelets

Interactive 1-D Wavelet Coefficient Selection
This section takes you through the features of one-dimensional selection of
wavelet coefficients using one of the Wavelet Toolbox specialized tools. The
toolbox provides a graphical interface tool to explore some reconstruction
schemes based on various wavelet coefficients selection strategies:

• Global selection of biggest coefficients (in absolute value)

• By level selection of biggest coefficients

• Automatic selection of biggest coefficients

• Manual selection of coefficients

For this section, switch the extension mode to symmetric padding using the
command

dwtmode('sym')

1 Start the Wavelet Coefficients Selection 1-D Tool.

From the MATLAB prompt, type

wavemenu

The Wavelet Toolbox Main Menu appears.

2-16

Interactive 1-D Wavelet Coefficient Selection

Click the Wavelet Coefficients Selection 1-D menu item. The discrete
wavelet coefficients selection tool for one-dimensional signals appears.

2 Load data.

From the File menu, choose the Load Signal option.

When the Load Signal dialog box appears, select the MAT-file
noisbump.mat, which should reside in the MATLAB folder

2-17

2 Using Wavelets

toolbox/wavelet/wavedemo. Click the OK button. The noisy bumps data
is loaded into the Wavelet Coefficients Selection 1-D tool.

3 Perform a Wavelet Decomposition.

Select the db3 wavelet from theWavelet menu and select 6 from the Level
menu, and then click the Analyze button.

The tool displays below the original signal (on the left) its wavelet
decomposition: the approximation coefficients A6 and detail coefficients
from D6 at the top to D1 at the bottom. In the middle of the window, below
the synthesized signal (which at this step is the same, since all the wavelet
coefficients are kept) it displays the selected coefficients.

Selecting Biggest Coefficients Globally

On the right of the window, find a column labeled Kept. The last line
shows the total number of coefficients: 1049. This is a little bit more than
the number of observations, which is 1024. You can choose the number
of selected biggest coefficients by typing a number instead of 1049 or by
using the slider. Type 40 and press Enter. The numbers of selected
biggest coefficients level by level are updated (but cannot be modified since
Global is the current selection method). Then click the Apply button. The
resulting coefficients are now displayed.

2-18

Interactive 1-D Wavelet Coefficient Selection

In the previous trial, the approximation coefficients were all kept. It is
possible to relax this constraint by selecting another option from the App.
cfs menu (Approximation Coefficients abbreviation). Choose the Unselect
option and click the Apply button.

None of the approximation coefficients are kept.

2-19

2 Using Wavelets

From the App. cfs menu, select the Selectable option. Type 80 for the
number of selected biggest coefficients and press Enter. Then, click the
Apply button.

Some of the approximation coefficients (15) have been kept.

Selecting Biggest Coefficients by Level

From the Define Selection method menu, select the By Level option.
You can choose the number of selected biggest coefficients by level or select
it using the sliders. Type 4 for the approximation and each detail, and
then click the Apply button.

2-20

Interactive 1-D Wavelet Coefficient Selection

Selecting Coefficients Manually

From the Define Selection method menu, select the Manual option.
The tool displays on the left part, below the original signal, its wavelet
decomposition. At the beginning, no coefficients are kept so no selected
coefficient is visible and the synthesized signal is null.

2-21

2 Using Wavelets

Select 16 coefficients individually by double clicking each of them using the
left mouse button. The color of selected coefficients switches from green
to yellow for the details and from blue to yellow for the approximation,
which appear on the left of the window and appear in yellow on the middle
part. Click the Apply button.

You can deselect the currently selected coefficients by double clicking each
of them. Another way to select or deselect a set of coefficients is to use the
selection box. Drag a rubber band box (hold down the left mouse button)
over a portion of the coefficient axes (original or selected) containing all
the currently selected coefficients. Click the Unselect button located on
the right of the window. Click the Apply button. The tool displays the
null signal again.

Note that when the coefficients are very close, it is easier to zoom in before
selecting or deselecting them.

Drag a rubber band box over the portion of the coefficient axes around the
position 800 and containing all scales and click the Select button. Click
the Apply button.

2-22

Interactive 1-D Wavelet Coefficient Selection

This illustrates that wavelet analysis is a local analysis since the signal is
perfectly reconstructed around the position 800. Check the Show Original
Signal to magnify it.

Selecting Coefficients Automatically

From the Define Selection method menu, select the Stepwise movie
option. The tool displays the same initial window as in the manual selection
mode, except for the left part of it.

Let’s perform the stepwise movie using the k biggest coefficients, from
k = 1 to k = 31 in steps of 1, click the Start button. As soon as the result
is satisfactory, click the Stop button.

2-23

2 Using Wavelets

4 Save the synthesized signal.

The tool lets you save the synthesized signal to disk. The toolbox creates a
MAT-file in the current folder with a name you choose.

To save the synthesized signal from the present selection, use the menu
option File > Save Synthesized Signal. A dialog box appears that lets you
specify a folder and filename for storing the signal and the wavelet name.

At the end of this section, turn back the extension mode to zero padding
using the command

dwtmode('zpd')

2-24

Interactive 2-D Wavelet Coefficient Selection

Interactive 2-D Wavelet Coefficient Selection
This section takes you through the features of two-dimensional selection of
wavelet coefficients using one of the Wavelet Toolbox specialized tools. The
toolbox provides a graphical interface tool to explore some reconstruction
schemes based on various wavelet coefficient selection strategies:

• Global selection of biggest coefficients (in absolute value)

• By level selection of biggest coefficients

• Automatic selection of biggest coefficients.

This section will be short since the functionality are similar to the
one-dimensional ones examined in the previous section.

For this section, switch the extension mode to symmetric padding using the
command

dwtmode('sym')

1 Start the Wavelet Coefficients Selection 2-D Tool.

From the MATLAB prompt, type

wavemenu

The Wavelet Toolbox Main Menu appears.

2-25

2 Using Wavelets

Click the Wavelet Coefficients Selection 2-D menu item. The discrete
wavelet coefficients selection tool for images appears.

2-26

Interactive 2-D Wavelet Coefficient Selection

2 Load data.

From the File menu, choose the Load Image option.

When the Load Image dialog box appears, select the MAT-file
noiswom.mat, which should reside in the MATLAB folder
toolbox/wavelet/wavedemo. Click the NO to load the grayscale image.

3 Perform a Wavelet Decomposition.

Select the sym4 wavelet from the Wavelet menu and select 4 from the
Level menu, and then click the Analyze button.

The tool displays its wavelet decomposition below the original image (on the
left). The selected coefficients are displayed in the middle of the window,
below the synthesized image (which, at this step, is the same since all the
wavelet coefficients are kept). There are 11874 coefficients, a little bit more
than the original image number of pixels, which is 96x96 = 9216.

2-27

2 Using Wavelets

Note The difference between 9216 and 11874 comes from the extra
coefficients generated by the redundant DWT using the current extension
mode (symmetric, 'sym'). Because 96 is divisible by 24 = 16, using
the periodic extension mode ('per') for the DWT, you obtain for each
level the minimum number of coefficients. More precisely, if you type
dwtmode('per') and repeat steps 2 to 5, you obtain 9216 coefficients.

Selecting Biggest Coefficients Globally

On the right of the window, find a column labeled Kept. The last line
shows the total number of coefficients: 11874. This is a little bit more
than the original image number of pixels. You can choose the number of
selected biggest coefficients by typing a number instead of 11874, or by
using the slider. Type 1100 and press Enter. The numbers of selected
biggest coefficients level by level are updated (but cannot be modified, since
Global is the current selection method).

Then click the Apply button.

2-28

Interactive 2-D Wavelet Coefficient Selection

In the previous operation, all the approximation coefficients were kept. It is
possible to relax this constraint by selecting another option from the App.
cfsmenu (see “Interactive 1-D Wavelet Coefficient Selection” on page 2-16).

Selecting Biggest Coefficients by Level

Selecting Biggest Coefficients by Level. From the Define Selection
method menu, select the By Level option. You can choose the number of
selected biggest coefficients by level, or select it using the sliders. Type 100
for each detail, and then click the Apply button.

2-29

2 Using Wavelets

Selecting Coefficients Automatically

From the Define Selection method menu, select the Stepwise movie
option. The tool displays its wavelet decomposition on the left, below the
original image. At the beginning, no coefficients are kept so the synthesized
image is null. Perform the stepwise movie using the k biggest coefficients,
from k = 144 to k = 1500, in steps of 20. Click the Start button. As soon
as the result is satisfactory, click the Stop button.

2-30

Interactive 2-D Wavelet Coefficient Selection

We’ve stopped the movie at 864 coefficients (including the number of
approximation coefficients).

4 Save the synthesized image.

This tool lets you save the synthesized image to disk. The toolbox creates a
MAT-file in the current folder with a name you choose.

To save the synthesized image from the present selection, use the menu
option File > Save Synthesized Image. A dialog box appears that lets
you specify a folder and filename for storing the image and, in addition,
the colormap and the wavelet name.

At the end of this section, turn back the extension mode to zero padding
using the command

dwtmode('zpd')

2-31

2 Using Wavelets

One-Dimensional Extension
This section takes you through the features of one-dimensional extension or
truncation using one of the Wavelet Toolbox utilities.

One-Dimensional Extension Using the Command Line
The function wextend performs signal extension. For more information, see
its reference page.

One-Dimensional Extension Using the Graphical
Interface

1 Start the Signal Extension Tool.

From the MATLAB prompt, type

wavemenu

The Wavelet Toolbox Main Menu appears.

Click the Signal Extension menu item.

2-32

One-Dimensional Extension

2 Load data.

From the File menu, choose the Load Signal option.

When the Load Signal dialog box appears, select the MAT-file
noisbloc.mat, which should reside in the MATLAB folder
toolbox/wavelet/wavedemo. Click the OK button. The noisy blocks data
is loaded into the Signal Extension tool.

3 Extend the signal.

Enter 1300 in the Desired Length box of the extended signal, and select
the Left option from the Direction to extend menu. Then accept the
default Symmetric for the Extension mode, and click the Extend button.

2-33

2 Using Wavelets

The tool displays the original signal delimited by a red box and the
transformed signal delimited by a yellow box. The signal has been extended
by left symmetric boundary values replication.

Select the Both option from the Direction to extend menu and select the
Continuous option from the Extension mode menu. Click the Extend
button.

2-34

One-Dimensional Extension

The signal is extended in both directions by replicating the first value to
the left and the last value to the right, respectively.

Extending Signal for SWT

Since the decomposition at level k of a signal using SWT requires that 2^k
divides evenly into the length of the signal, the tool provides a special option
dedicated to this kind of extension.

Select the For SWT option from the Extension mode menu. Click the
Extend button.

2-35

2 Using Wavelets

Since the signal is of length 1024 = 2^10, no extension is needed so the
Extend button is ineffective.

From the File menu, choose the Example Extension option and select the
last item of the list.

2-36

One-Dimensional Extension

Since the signal is of length 1000 and the decomposition level needed for SWT
is 10, the tool performs a minimal right periodic extension. The extended
signal is of length 1024.

Select 4 from the SWT Decomposition Level menu, and then click the
Extend button. The tool performs a minimal right periodic extension leading
to an extended signal of length 1008 (because 1008 is the smallest integer
greater than 1000 divisible by 2^4 = 16).

Select 2 from the SWT Decomposition Level menu. Since 1000 is divisible
by 4, no extension is needed.

Truncating Signal

The same tool allows you to truncate a signal.

Since truncation is not allowed for the special mode For SWT, select the
Periodic option from the Extension mode menu. Type 900 for the desired
length and press Enter. Click the Truncate button.

2-37

2 Using Wavelets

The tool displays the original signal delimited by a red box and the truncated
signal delimited by a yellow box. The signal has been truncated by deleting
100 values on the right side.

Importing and Exporting Information from the
Graphical Interface
This tool lets you save the transformed signal to disk. The toolbox creates a
MAT-file in the current folder with a name you choose.

To save the transformed signal, use the menu option File > Save
Transformed Signal. A dialog box appears that lets you specify a folder and
filename for storing the image. Type the name tfrqbrk. After saving the
signal data to the file tfrqbrk.mat, load the variable into your workspace:

load tfrqbrk
whos

Name Size Bytes Class

tfrqbrk 1x900 7200 double array

2-38

Two-Dimensional Extension

Two-Dimensional Extension
This section takes you through the features of two-dimensional extension or
truncation using one of the Wavelet Toolbox utilities. This section is short
since it is very similar to “One-Dimensional Extension” on page 2-32.

Two-Dimensional Extension Using the Command Line
The function wextend performs image extension. For more information, see
its reference page.

Two-Dimensional Extension Using the Graphical
Interface

1 Start the Image Extension Tool.

From the MATLAB prompt, type

wavemenu

The Wavelet Toolbox Main Menu appears.

2-39

2 Using Wavelets

Click the Image Extension menu item.

2 Extend (or truncate) the image.

From the File menu, choose the Example Extension option and select
the first item of the list.

The tool displays the original image delimited by a red box and the
transformed image delimited by a yellow box. The image has been extended
by zero padding. The right part of the window allows you to control
the parameters of the extension/truncation process for the vertical and
horizontal directions, respectively. The possibilities are similar to the
one-dimensional ones described in “One-Dimensional Extension” on page
2-32.

To see some more extension cases, look at the examples of the toolbox
(using the wavedemo command).

2-40

Two-Dimensional Extension

Importing and Exporting Information from the
Graphical Interface
This tool lets you save the transformed image to disk. The toolbox creates a
MAT-file in the current folder with a name you choose.

To save the transformed image, use the menu option File >
Save Transformed Image.

A dialog box appears that lets you specify a folder and filename for storing
the image. Type the name woman2. After saving the image data to the file
woman2.mat, load the variable into your workspace:

load woman2
whos

Name Size Bytes Class

woman2 200x220 352000 double array

map 253x3 6120 double array

The transformed image is stored together with its colormap.

2-41

2 Using Wavelets

Image Fusion
This section takes you through the features of Image Fusion, one of the
Wavelet Toolbox specialized tools.

For the examples in this section, switch the extension mode to symmetric
padding, using the command:

dwtmode('sym')

The toolbox requires only one function for image fusion: wfusimg. You’ll find
full information about this function in its reference page. For more details on
fusion methods see the wfusmat function.

In this section, you’ll learn how to

• Load images

• Perform decompositions

• Merge images from their decompositions

• Restore images from their decompositions

• Save image after fusion

Since you can perform analyses either from the command line or using the
graphical interface tools, this section has subsections covering each method.

The principle of image fusion using wavelets is to merge the wavelet
decompositions of the two original images using fusion methods applied to
approximations coefficients and details coefficients (see [MisMOP03] and
[Zee98] in “References” on page 1-71).

The two images must be of the same size and are supposed to be associated
with indexed images on a common colormap (see wextend to resize images).

Two examples are examined: the first one merges two different images
leading to a new image and the second restores an image from two fuzzy
versions of an original image.

2-42

Image Fusion

Image Fusion Using the Command Line

Example 1: Fusion of Two Different Images

1 Load two original images: a mask and a bust.

load mask; X1 = X;
load bust; X2 = X;

2 Merge the two images from wavelet decompositions at level 5 using db2 by
taking two different fusion methods: fusion by taking the mean for both
approximations and details,

XFUSmean = wfusimg(X1,X2,'db2',5,'mean','mean');

and fusion by taking the maximum for approximations and the minimum
for the details.

XFUSmaxmin = wfusimg(X1,X2,'db2',5,'max','min');

3 Plot original and synthesized images.

colormap(map);
subplot(221), image(X1), axis square, title('Mask')
subplot(222), image(X2), axis square, title('Bust')
subplot(223), image(XFUSmean), axis square,
title('Synthesized image, mean-mean')
subplot(224), image(XFUSmaxmin), axis square,
title('Synthesized image, max-min')

2-43

2 Using Wavelets

Example 2: Restoration by Fusion from Fuzzy Images

1 Load two fuzzy versions of an original image.

load cathe_1; X1 = X;
load cathe_2; X2 = X;

2 Merge the two images from wavelet decompositions at level 5 using sym4
by taking the maximum of absolute value of the coefficients for both
approximations and details.

XFUS = wfusimg(X1,X2,'sym4',5,'max','max');

3 Plot original and synthesized images.

colormap(map);
subplot(221), image(X1), axis square,
title('Catherine 1')
subplot(222), image(X2), axis square,
title('Catherine 2')
subplot(223), image(XFUS), axis square,
title('Synthesized image')

2-44

Image Fusion

The synthesized image is a restored version of good quality of the common
underlying original image.

Image Fusion Using the Graphical Interface

1 Start the Image Fusion Tool.

From the MATLAB prompt, type

wavemenu

to display the Wavelet Toolbox Main Menu and then click the Image
Fusion menu item to display the Image Fusion Tool.

2-45

2 Using Wavelets

2 Load original images.

From the File menu, choose the Load Image 1 option.

2-46

Image Fusion

When the Load Image 1 dialog box appears, select the MAT-file mask.mat,
which should reside in the MATLAB folder toolbox/wavelet/wavedemo.
Click NO to load as a grayscale image.

Perform the same sequence choosing the Load Image 2 option and
selecting the MAT-file bust.mat. Click NO to load as a grayscale image.

3 Perform wavelet decompositions.

Using theWavelet and Level menus located to the upper right, determine
the wavelet family, the wavelet type, and the number of levels to be used
for the analysis.

For this analysis, select the db2 wavelet at level 5.

Click the Decompose button.

After a pause for computation, the tool displays the two analyses.

4 Merge two images from their decompositions.

From Select Fusion Method frame, select the item mean for both
Approx. and Details. Next, click the Apply button.

2-47

2 Using Wavelets

The synthesized image and its decomposition (which is equal to the fusion
of the two decompositions) appear. The new image produced by fusion
clearly exhibits features from the two original ones.

Let us now examine another example illustrating restoration using image
fusion.

5 Restore the image using image fusion.

From the File menu, load Image 1 by selecting the MAT-file cathe_1.mat,
and Image 2 by selecting the MAT-file cathe_2.mat.

6 Using the Wavelet and Level menus, select the sym4 wavelet at level
5. Click the Decompose button.

7 From Select Fusion Method frame, select the item max for both Approx.
and Details. Next, click the Apply button.

2-48

Image Fusion

The synthesized image is a restored version of good quality of the common
underlying original image.

Saving the Synthesized Image
The Image Fusion Tool lets you save the synthesized image to disk. The
toolbox creates a MAT-file in the current folder with a name you choose.

To save the synthesized image from the present selection, use the menu
option File > Save Synthesized Image.

A dialog box appears that lets you specify a folder and filename for storing
the image. After you save the image data to the file rescathe.mat, the
synthesized image is given by X and the colormap by map.

2-49

2 Using Wavelets

One-Dimensional Fractional Brownian Motion Synthesis
This section takes you through the features of One-Dimensional Fractional
Brownian Motion Synthesis using one of the Wavelet Toolbox specialized tools.

For the examples in this section, switch the extension mode to symmetric
padding, using the command

dwtmode('sym')

The toolbox requires only one function to generate a fractional Brownian
motion signal: wfbm. You’ll find full information about this function in its
reference page.

In this section, you’ll learn how to

• Generate a fractional Brownian motion signal

• Look at its main properties

• Save the synthesized signal

Since you can perform the generation either from the command line or using
the graphical interface tools, this section has subsections covering each
method.

A fractional Brownian motion (fBm) is a continuous-time Gaussian process
depending on the Hurst parameter 0 < H < 1. It generalizes the ordinary
Brownian motion corresponding to H = 0.5 and whose derivative is the
white noise. The fBm is self-similar in distribution and the variance of the
increments is given by

Var(fBm(t)-fBm(s)) = v |t-s|^(2H)

where v is a positive constant.

Fractional Brownian Motion Synthesis Using the
Command Line
According to the value of H, the fBm exhibits for H > 0.5, long-range
dependence and for H < 0.5, short or intermediate dependence.

2-50

One-Dimensional Fractional Brownian Motion Synthesis

Let us give an example of each situation using the wfbm file, which generates
a sample path of this process.

% Generate fBm for H = 0.3 and H = 0.7

% Set the parameter H and the sample length
H = 0.3; lg = 1000;
% Generate and plot wavelet-based fBm for H = 0.3
fBm03 = wfbm(H,lg,'plot');

% Generate and plot wavelet-based fBm for H = 0.7
fBm07 = wfbm(H,lg,'plot');

% The last step is equivalent to
% Define wavelet and level of decomposition
% w = ' db10'; ns = 6;
% Generate
% fBm07 = wfbm(H,lg,'plot',w,ns);

It appears that fBm07 clearly exhibits a stronger low-frequency component
and has, locally, a less irregular behavior.

Fractional Brownian Motion Synthesis Using the
Graphical Interface

1 Start the Fractional Brownian Motion Synthesis Tool.

From the MATLAB prompt, type

wavemenu

TheWavelet Toolbox Main Menu appears. Click Fractional Brownian
Generation 1-D to display the One-Dimensional Fractional Brownian
Motion Synthesis Tool.

2-51

2 Using Wavelets

2 Generate fBm.

2-52

One-Dimensional Fractional Brownian Motion Synthesis

From the Fractal Index edit button, type 0.3 and from the Seed frame,
select the item State and set the value to 0. Next, click the Generate
button.

The synthesized signal exhibits a locally highly irregular behavior.

3 Now let us try another value for the fractal index. From the Fractal Index
edit button, type 0.7 and from the Seed frame, select the item State and
set the value to 0. Next, click the Generate button.

2-53

2 Using Wavelets

The synthesized signal clearly exhibits a stronger low-frequency component
and has locally a less irregular behavior. These properties can be
investigated by clicking the Statistics button.

Saving the Synthesized Signal
The Fractional Brownian Motion Synthesis Tool lets you save the synthesized
signal to disk. The toolbox creates a MAT-file in the current folder with a
name you choose.

To save the synthesized signal from the present selection, use the option File
> Save Synthesized Signal. A dialog box appears that lets you specify a
folder and filename for storing the signal. After saving the signal data to the
file fbm07.mat, load the variables into workspace.

load fbm07
whos

Name Size Bytes Class

FBM_PARAMS 1x1 668 struct array

fbm07 1x1000 8000 double array

2-54

One-Dimensional Fractional Brownian Motion Synthesis

FBM_PARAMS

FBM_PARAMS =
SEED: [2x1 double]
Wav: 'db10'

Length: 1000
H: 0.7000

Refinement: 6

The synthesized signal is given by fbm07. In addition, the parameters of the
generation are given by FBM_PARAMS, which is a cell array of length 5.

2-55

2 Using Wavelets

New Wavelet for CWT
This section takes you through the features of New Wavelet for CWT, one of
the Wavelet Toolbox specialized tools.

The toolbox requires only one function to design a new wavelet adapted to a
given pattern for CWT: pat2cwav. You’ll find full information about this
function in its reference page.

In this section, you’ll learn how to

• Load a pattern

• Synthesize a new wavelet adapted to the given pattern

• Detect patterns by CWT using the adapted wavelet

• Compare the detection using both the adapted wavelet and well-known
wavelets

• Save the synthesized wavelet

Since you can perform the design of the new wavelet for CWT either from
the command line or using the graphical interface tools, this section has
subsections covering each method.

The principle for designing a new wavelet for CWT is to approximate a given
pattern using least squares optimization under constraints leading to an
admissible wavelet well suited for the pattern detection using the continuous
wavelet transform (see [MisMOP03] in “References” on page 1-71).

New Wavelet for CWT Using the Command Line
The following example illustrates how to generate a new wavelet starting
from a pattern.

% Load original pattern: a pseudo sine one.
load ptpssin1;

% Variables X and Y contain the pattern.
whos

2-56

New Wavelet for CWT

Name Size Bytes Class

IntVAL 1x1 8 double array

X 1x256 2048 double array

Y 1x256 2048 double array

caption 1x35 70 char array

IntVAL

IntVAL =
0.1592

% The pattern on the interval [0,1] integrates to 0.1592.
% So it is not a wavelet but it is a good candidate since it
% oscillates like a wavelet.
plot(X,Y), title('Original Pattern')

% To synthesize a new wavelet adapted to the given pattern, use
% a least squares polynomial approximation of degree 6 with
% constraints of continuity at the beginning and the end of the
% pattern.
[psi,xval,nc] = pat2cwav(Y, 'polynomial',6, 'continuous') ;

% The new wavelet is given by xval and nc*psi.
plot(X,Y,'-',xval,nc*psi,'--'),
title('Original Pattern and Adapted Wavelet (dashed line)')

2-57

2 Using Wavelets

% Let us notice that the version of the wavelet correctly
% defined in order to be used in the CWT algorithm must be of
% square norm equal to 1. It is simply given by xval and psi.

New Wavelet for CWT Using the Graphical Interface

1 Start the New Wavelet for CWT Tool.

From the MATLAB prompt, type

wavemenu

The Wavelet Toolbox Main Menu appears. Click the New Wavelet
for CWT menu item to display the Pattern Adapted Admissible Wavelet
Design Tool.

2-58

New Wavelet for CWT

.

2-59

2 Using Wavelets

2 Load the original pattern.

The MAT-file defining the pattern can contain more than one variable.
In that case, the variable Y is considered if it exists; otherwise, the first
variable is considered.

3 From the File menu, choose the Load Pattern option.

When the Load Pattern dialog box appears, select the MAT-file
ptpssin1.mat, which should reside in the MATLAB folder
toolbox/wavelet/wavedemo. Click the OK button.

The selected pattern denoted by F is defined on the interval [0,1] and is
of integral 0.1592. It is not a wavelet, but it is a good candidate because
it oscillates like a wavelet.

4 Perform pattern approximation.

Accept the default parameters leading to use a polynomial of degree 3 with
constraints of continuity at the borders 0 and 1, to approximate the pattern
F. Click the Approximate button.

2-60

New Wavelet for CWT

After a pause for computation, the tool displays the new wavelet in green
superimposed with the original pattern in red.

The result is not really satisfactory. A solution is to increase the polynomial
degree to fit better the pattern.

5 Using the Polynomial Degree menu, increase the degree by selecting 6.
Then click the Approximate button again.

2-61

2 Using Wavelets

The result is now of good quality and can be used for pattern detection.

6 Pattern detection using the new wavelet.

Click the Run button.

After a pause for computation, the tool displays the running signal and the
pattern detection by CWT using the adapted wavelet.

2-62

New Wavelet for CWT

The running signal is the superimposition of two dilated and translated
versions of the pattern F, namely F((t-20)/8) and F((t-40)/4). The two
pairs (position, scale) to be detected are given by (20,8) and (40,4) and are
materialized by dashed lines in the lower right graph of the contour plot
of the CWT. The detection is perfect because the two local maxima of the
absolute values of the continuous wavelet coefficients fit perfectly.

7 Using the Running signal frame, select the Noise check box to add an
additive noise to the previous signal. Click the Run button again.

2-63

2 Using Wavelets

The quality of the detection is not altered at all.

8 Compare the adapted wavelet and well-known wavelets.

Let us now compare the performance for pattern detection of the adapted
wavelet versus well-known wavelets. Click the Compare button. A new
window appears.

2-64

New Wavelet for CWT

This tool displays the pattern detection performed with the adapted
wavelet on the left and db1 wavelet (default) on the right. The two positions
are perfectly detected in both cases but scales are slightly underestimated
by the db1 wavelet.

The tool allows you to generate various running signals and choose the
wavelet to be compared with the adapted one.

Click the Close button to get back to the main window.

Saving the New Wavelet
The New Wavelet for CWT Tool lets you save the synthesized wavelet. The
toolbox creates a MAT-file in the current folder with a name you choose.

To save the new wavelet from the present selection, use the option File >
Save Adapted Wavelet. A dialog box appears that lets you specify a folder
and filename for storing the data. After you save the wavelet data to the file
newwavel.mat, the adapted wavelet is given by X and Y.

2-65

2 Using Wavelets

Note that the version of the saved wavelet is correctly defined to be used in
the CWT algorithm and is such that its square norm is equal to 1.

2-66

3

Getting Started with
Wavelet Analysis

• “Wavelet Families and Properties” on page 3-2

• “Visualizing Wavelets, Wavelet Packets, and Wavelet Filters” on page 3-5

• “Continuous Wavelet Analysis” on page 3-9

• “DFT-Based Continuous Wavelet Transform and Inverse Continuous
Wavelet Transform” on page 3-11

• “Critically-Sampled Discrete Wavelet Analysis” on page 3-16

• “Lifting” on page 3-22

• “Nondecimated Discrete Wavelet Analysis” on page 3-28

• “Critically Sampled Wavelet Packet Analysis” on page 3-32

• “Matching Pursuit” on page 3-34

3 Getting Started with Wavelet Analysis

Wavelet Families and Properties
This example shows how to find and display information about available
wavelets. The Wavelet Toolbox software contains an extensive selection of
the most commonly-used wavelets and orthogonal and biorthogonal wavelet
filters. You also have the ability to add your own filters to the toolbox.

Determine the existing wavelet families. Display the wavelet family names in
the command window.

waveletfamilies('f')

Display the names of all available wavelets in each family.

waveletfamilies('a')

You can also use wavemngr to display the available wavelet families.

wavemngr('read')

Use the wavelet family short name to determine what analysis an existing
wavelet supports.

The wavelet family short name for the Daubechies extremal-phase wavelets
is 'db'.

waveinfo('db')

Determine what analysis the Morlet wavelet supports. The wavelet family
short name is 'morl'.

waveinfo('morl')

Use the Wavelet Toolbox interactive tool, wavemenu, to investigate wavelet
families.

Almost anything you can do in the Wavelet Toolbox software at the command
line, you can accomplish in wavemenu.

To start the interactive tool, enter wavemenu at the command line.

3-2

Wavelet Families and Properties

ClickWavelet Display. Select the db4 wavelet and click Display.

3-3

3 Getting Started with Wavelet Analysis

3-4

Visualizing Wavelets, Wavelet Packets, and Wavelet Filters

Visualizing Wavelets, Wavelet Packets, and Wavelet
Filters

This example shows how to use wfilters, wavefun, and wpfun to obtain the
filters, wavelet, or wavelet packets corresponding to a particular wavelet
family. You can visualize 2-D separable wavelets with wavefun2.

Obtain the decomposition (analysis) and reconstruction (synthesis) filters
for the biorthogonal spline wavelet filters with 3 vanishing moments in the
reconstruction filter and 5 vanishing moments in the decomposition filter.

[LoD,HiD,LoR,HiR] = wfilters('bior3.5');
subplot(221);
stem(LoD,'markerfacecolor',[0 0 1]); title('Lowpass Decomposition Filter');
subplot(222);
stem(LoR,'markerfacecolor',[0 0 1]); title('Lowpass Reconstruction Filter')
subplot(223);
stem(HiD,'markerfacecolor',[0 0 1]); title('Highpass Decomposition Filter')
subplot(224);
stem(HiR,'markerfacecolor',[0 0 1]); title('Highpass Reconstruction Filter'

3-5

3 Getting Started with Wavelet Analysis

Visualize the real-valued Morlet wavelet. There is no associated scaling
function.

[psi,xval] = wavefun('morl');
plot(xval,psi,'linewidth',2);
title('$\psi(x) = e^{-x^2/2} \cos{(5x)}$','Interpreter','latex',...

'fontsize',14);

3-6

Visualizing Wavelets, Wavelet Packets, and Wavelet Filters

Obtain the first 4 wavelet packets for the Daubechies least-asymmetric
wavelet with 4 vanishing moments, sym4.

[wpws,x] = wpfun('sym4',4,10);
for nn = 1:size(wpws,1)

subplot(3,2,nn)

plot(x,wpws(nn,:)); axis tight;
title(['W',num2str(nn-1)]);

end

3-7

3 Getting Started with Wavelet Analysis

3-8

Continuous Wavelet Analysis

Continuous Wavelet Analysis
This example shows how to perform time-frequency analysis using the
continuous wavelet transform (CWT). Continuous wavelet analysis provides
a time-scale/time-frequency analysis of signals and images. The Wavelet
Toolbox software has both command line and interactive functionality
to support continuous wavelet analysis of 1-D signals and 2-D images.
To perform continuous wavelet analysis with the interactive tool, enter
wavemenu at the MATLAB command line and click one of the following
choices: Continuous Wavelet 1-D, Complex Continuous Wavelet
1-D, Continuous Wavelet 1-D (Using FFT), or Continuous Wavelet
Transform 2-D.

Construct a signal consisting of two sinusoids with frequencies of 100 and 50
Hz. The data is sampled at 1 kHz. The support of the two sinusoids is disjoint.
The 100-Hz sine wave begins at t=0 and has a duration of 1 second. The 50-Hz
sinusoid begins at three seconds and has a duration of two seconds.

Use the complex-valued (nonanalytic) Morlet wavelet, cmor1-1. To determine
the scales of interest, assume you are interested in the frequency region from
10 to 125 Hz. To determine the range of scales corresponding to [10,125],
use centfrq.

Fs = 1000;
fc = centfrq('cmor1-1');
% a = fc/(freq*dt)
freqrange = [20 150];
scalerange = fc./(freqrange*(1/Fs));

With your scales of interest, obtain a scalogram analysis.

t = linspace(0,5,5e3);
x = cos(2*pi*100*t).*(t<1)+cos(2*pi*50*t).*(3<t)+0.3*randn(size(t));
scales = scalerange(end):0.2:scalerange(1);
Coeffs = cwt(x,scales,'cmor1-1');
SCImg = wscalogram('image',Coeffs,'scales',scales,'ydata',x,'xdata',t);

3-9

3 Getting Started with Wavelet Analysis

3-10

DFT-Based Continuous Wavelet Transform and Inverse Continuous Wavelet Transform

DFT-Based Continuous Wavelet Transform and Inverse
Continuous Wavelet Transform

This example shows how to use the discrete-Fourier-transform-based CWT
and inverse CWT.

Create a signal consisting of two disjoint sine waves with frequencies of 100
and 50 Hz punctuated by two impulses. The sampling frequency is 1 kHz and
the total signal duration is one second. The 100-Hz sine wave occurs over the
first 250 milliseconds of the data. The 50-Hz sinusoid occurs over the last 500
milliseconds. The impulses occur at 650 and 750 milliseconds. The signal also
has N(0,0.152) additive white Gaussian noise.Create and plot the signal. The
impulse at 650 milliseconds is visible, but the impulse at 750 milliseconds is
not evident in the time-domain data.

Fs = 1000;
t = 0:1/Fs:1-1/Fs;
x = zeros(size(t));
x([625,750]) = 2.5;
x = x+ cos(2*pi*100*t).*(t<0.25)+cos(2*pi*50*t).*(t>=0.5)+0.15*randn(size(t
plot(t,x);

3-11

3 Getting Started with Wavelet Analysis

First constuct a logarithmically-spaced (base 2) scale vector that yields 47
scales from 2 milliseconds up to approximately 240 milliseconds. Set the
scale resolution for the CWT at 0.15.

ds = 0.15;
J = fix((1/ds)*log2(length(x)/8));
dt = 1/Fs;
scales = 2*dt*2.^((0:J).*ds);

Obtain the CWT using an inverse DFT algorithm with cwtft. Use the analytic
Morlet wavelet. Use the Fourier factor for the analytic Morlet wavelet given
on the reference page for cwtft to obtain a more accurate scale-to-period
conversion. Plot the result.

3-12

DFT-Based Continuous Wavelet Transform and Inverse Continuous Wavelet Transform

The CWT moduli correctly show the supports of the disjoint sinusoids and the
locations of the impulses at 650 and 750 milliseconds. In the CWT moduli,
the impulse at 750 milliseconds is clearly visible.

The DFT-based CWT enables you to approximate the inverse CWT. The
approximate inverse CWT allows you to construct scale- and time-localized
approximations to events in your time series.

Use the inverse CWT to obtain a scale-localized approximation to the 100-Hz
sinusoid in the previous example. The signal consists of two disjoint sine
waves with frequencies of 100 and 50 Hz punctuated by two impulses. The
sampling frequency is 1 kHz and the total signal duration is one second. The
100-Hz sine wave occurs over the first 250 milliseconds of the data. The 50-Hz

3-13

3 Getting Started with Wavelet Analysis

sinusoid occurs over the last 500 milliseconds. The impulses occur at 650 and
750 milliseconds. The signal also has N(0,0.152) additive white Gaussian
noise. Recreate the signal and continuous wavelet analysis for convenience. If
you have run the previous examples and have the output in your MATLAB
workspace, you do not need to repeat this step.

Create the signal.

Fs = 1000;
t = 0:1/Fs:1-1/Fs;
x = zeros(size(t));
x([625,750]) = 2.5;
x = x+ cos(2*pi*100*t).*(t<0.25)+cos(2*pi*50*t).*(t>=0.5)+0.15*randn(size(t
plot(t,x);

Construct the scale vector for the CWT.

ds = 0.15;
J = fix((1/ds)*log2(length(x)/8));
dt = 1/Fs;
scales = 2*dt*2.^((0:J).*ds);

Obtain the CWT and display the result.

cwtstruct = cwtft({x,0.001},'Scales',scales,'Wavelet','morl');
periods = cwtstruct.scales.*(4*pi)/(6+sqrt(38));
freq = 1./periods;
cfs = cwtstruct.cfs;
contour(t,freq,abs(cfs));
set(gca,'xtick',[0 0.25 0.4 0.5 0.6 0.75 1]); grid on;
xlabel('Time (seconds)'); ylabel('Hz'); title('CWT Coefficient Moduli');

The 100-Hz sine wave has a scale of 0.01 seconds, but the CWT analysis is not
perfectly localized at that scale. Choose scales from 0.007 to 0.014 seconds to
accurately capture the 100-Hz component.

indices = find(scales>=0.007 & scales<=0.014);

Copy the structure array, cwtstruct, from the continuous wavelet analysis
of the signal. Initialize a new CWT coefficient array of zeros and extract the
relevant scales from the original coefficient array. Reconstruct the signal
approximation based on those scales using icwtft.

3-14

DFT-Based Continuous Wavelet Transform and Inverse Continuous Wavelet Transform

icwtsin = cwtstruct;
icwtsin.cfs = zeros(size(cwtstruct.cfs));
icwtsin.cfs(indices,:) = cwtstruct.cfs(indices,:);
xrec = icwtft(icwtsin);
plot(t,x);
hold on;
plot(t,xrec,'r');
set(gca,'xlim',[0 0.4]);
legend('Original Signal','Inverse CWT Approximation',...

'Location','NorthEast');

3-15

3 Getting Started with Wavelet Analysis

Critically-Sampled Discrete Wavelet Analysis
Wavelet Toolbox software enables you to analyze signals, images, and
3-D data using orthogonal and biorthogonal critically-sampled discrete
wavelet analysis. Critically-sampled discrete wavelet analysis is also
known as decimated discrete wavelet analysis. Decimated discrete wavelet
analysis is most appropriate for data compression, denoising, and the sparse
representation of certain classes of signals and images.

In decimated discrete wavelet analysis, the scales and translations are dyadic.

You can perform 1-D, 2-D, and 3-D decimated discrete wavelet analysis using
the interactive tool, wavemenu, by entering

wavemenu

at the command line and clicking Wavelet 1-D, Wavelet 2-D, or Wavelet
3-D.

1-D Wavelet Denoising
This example shows how to denoise a signal using discrete wavelet analysis.

Create a reference signal.

len = 2^11;
h = [4 -5 3 -4 5 -4.2 2.1 4.3 -3.1 5.1 -4.2];
t = [0.1 0.13 0.15 0.23 0.25 0.40 0.44 0.65 0.76 0.78 0.81];
h = abs(h);

w = 0.01*[0.5 0.5 0.6 1 1 3 1 1 0.5 0.8 0.5];
tt = linspace(0,1,len); xref = zeros(1,len);
for j=1:11

xref = xref + (h(j) ./ (1+ ((tt-t(j))/w(j)).^4));
end

3-16

Critically-Sampled Discrete Wavelet Analysis

Add zero-mean white Gaussian noise with a variance of 0.25.

rng default;
x = xref + 0.5*randn(size(xref));
plot(x); set(gca,'xlim',[1 2048]);

3-17

3 Getting Started with Wavelet Analysis

Denoise the signal down to level 3 using the Daubechies least asymmetric
wavelet with 4 vanishing moments. Use the universal threshold selection rule
of Donoho and Johnstone with soft thresholding based on the DWT coefficients
at level 1. Use the periodization signal extension mode — dwtmode('per').
Plot the result along with the reference signal for comparision.

dwtmode('per');
[xd,cxd,lxd] = wden(x,'sqtwolog','s','sln',4,'sym4');
plot(xd);
set(gca,'xlim',[1 2048]); hold on;
plot(xref,'r');

3-18

Critically-Sampled Discrete Wavelet Analysis

2-D Decimated Discrete Wavelet Analysis
This example shows how to obtain the 2-D DWT of an input image.

Load and display the image. The image consists of vertical, horizontal, and
diagonal patterns.

load tartan;
imagesc(X); colormap(gray);

3-19

3 Getting Started with Wavelet Analysis

Obtain the 2-D DWT at level 1 using the biorthogonal B-spline wavelet
and scaling filters with 2 vanishing moments in the analysis filters and 4
vanishing moments in the synthesis filters. Extract the horizontal, vertical,
and diagonal wavelet coefficients and the approximation coefficients. Display
the results.

[C,S] = wavedec2(X,1,'bior2.4');
[H,V,D] = detcoef2('all',C,S,1);
A = appcoef2(C,S,'bior2.4');
subplot(221);
imagesc(A); title('Approximation Level 1');
colormap(gray);
subplot(222);
imagesc(H); title('Horizontal Details');

3-20

Critically-Sampled Discrete Wavelet Analysis

subplot(223);
imagesc(V); title('Vertical Details');
subplot(224);
imagesc(D); title('Diagonal Details');

You see that the wavelet details are sensitive to particular orientations in the
input image. The approximation coefficients are a lowpass approximation
to the original image.

3-21

3 Getting Started with Wavelet Analysis

Lifting
This example shows how to use lifting on a 1-D signal.

Create a 1-D signal that is piecewise constant over 2 samples. Add N(0,0.12)
noise to the signal.

x = [1 1 2 2 -3.5 -3.5 4.3 4.3 6 6 -4.5 -4.5 2.2 2.2 -1.5 -1.5];
x = repmat(x,1,64);
rng default;
x = x+ 0.1*randn(size(x));

Plot the signal and zoom in on the first 100 samples to visualize the
correlation in neighboring samples.

plot(x);
set(gca,'xlim',[0 100]);

3-22

Lifting

Use the lazy wavelet to obtain the even and odd polyphase components of
the signal.

LS = liftwave('lazy');
[A,D] = lwt(x,LS);

If you plot the detail (wavelet) coefficients in D, you see that this transform
has not decorrelated the signal. The wavelet coefficients look very much like
the signal.

Add a dual lifting step that subtracts the even-indexed coefficient from the
odd-coefficient one sample later, x(2n+1)-x(2n).

els = {'d',-1,0};

3-23

3 Getting Started with Wavelet Analysis

LSnew = addlift(LS,els);

Because the signal is piecewise constant over consecutive samples with
additive noise, the new dual lifting step should result in wavelet coefficients
small in absolute value. In this case, the wavelet transform does decorrelate
the data. Verify this by finding the approximation and detail coefficients
with the new dual lifting step.

[A,D] = lwt(x,LSnew);

If you plot the detail (wavelet) coefficients, you see that the wavelet
coefficients no longer resemble the original signal.

The approximation coefficients, A, of the previous transform constitute the
even polyphase component of the signal. Therefore, the coefficients are
affected by aliasing. Use a primal lifting step to update the approximation
coefficients and reduce aliasing. The primal step replaces the approximation
coefficients by x(2n)+1/2(x(2n+1)-x(2n)), which is equal to the average of x(2n)
and x(2n+1). The averaging is a lowpass filtering, which helps to reduce
aliasing.

els = {'p',1/2, 0};
LSnew = addlift(LSnew,els);

Use the updated lifting scheme to obtain the wavelet transform of the input
signal.

[A,D] = lwt(x,LSnew);

Add the appropriate scaling to ensure perfect reconstruction. Obtain the
approximation and wavelet coefficients using lifting and reconstruct the
signal using ilwt. Verify perfect reconstruction.

LSnew(end,:) = {sqrt(2),sqrt(2)/2,[]};
[A,D] = lwt(x,LSnew);
x1 = ilwt(A,D,LSnew);
max(abs(x1-x))

The preceding example designed a wavelet, which effectively removed a
zero-th order polynomial (constant). If the behavior of the signal is better
represented by a higher-order polynomial, you can design a dual wavelet with
the appropriate number of vanishing moments to decorrelate the signal.

3-24

Lifting

Use the lifting scheme to design a wavelet with 2 vanishing moments. A dual
wavelet with 2 vanishing moments decorrelates a signal with local behavior
approximated by a first-order polynomial. Create a signal characterized by
first-order polynomial behavior with additive N(0,0.252) noise.

y = [1 0 0 4 0 0 -1 0 0 2 0 0 7 0 0 -4 0 0 1 0 0 -3];
x1 = 1:(21/1024):22-(21/1024);
y1 = interp1(1:22,y,x1,'linear');
rng default;
y1 = y1+0.25*randn(size(y1));
plot(x1,y1); set(gca,'xlim',[1 22]);

In this case, the wavelet coefficients should remove a first-order polynomial. If
the signal value at an odd index, x(2n+1), is well approximated by a first-order

3-25

3 Getting Started with Wavelet Analysis

polynomial fitted to the surrounding sample values, then 1/2(x(2n)+x(2n+2))
should provide a good fit for x(2n+1). In other words, x(2n+1) should be the
midpoint between x(2n) and x(2n+2).

It follows that x(2n+1)–1/2(x(2n)+x(2n+2)) should decorrelate the signal.

Start with the lazy wavelet transform and add a dual lifting step which
models the preceding equation.

LS = liftwave('lazy');
els = {'d',[-1/2 -1/2],1};
LSnew = addlift(LS,els);

Use the lifting scheme to obtain the approximation and detail coefficients
and plot the result.

[A,D] = lwt(y1,LSnew);
subplot(211)
plot(A); set(gca,'xlim',[1 512]);
title('Approximation Coefficients');
subplot(212)
plot(D); set(gca,'xlim',[1 512]);
title('Detail Coefficients');

You see that the wavelet coefficients appear to only contain noise, while the
approximation coefficients represent a denoised version of the original signal.
Because the preceding transform uses only the even polyphase component for
the approximation coefficients, you can reduce aliasing by adding a primal
lifting step. Finally, add the normalization constants to produce a perfect
reconstruction filter bank.

Obtain the discrete wavelet transform with the new lifting scheme and plot
the results.

els = {'p',[1/4 1/4],0};
LSnew = addlift(LSnew,els);
LSnew(end,:) = {sqrt(2),sqrt(2)/2,[]};
[A,D] = lwt(y1,LSnew);
subplot(211)
plot(A); set(gca,'xlim',[1 512]);
title('Approximation Coefficients');

3-26

Lifting

subplot(212)
plot(D); set(gca,'xlim',[1 512]);
title('Detail Coefficients');

Demonstrate that you have designed a perfect reconstruction filter bank.

y2 = ilwt(A,D,LSnew);
max(abs(y2-y1))

3-27

3 Getting Started with Wavelet Analysis

Nondecimated Discrete Wavelet Analysis
This example shows how to obtain the nondecimated (stationary) wavelet
transform of a noisy frequency-modulated signal.

Load the noisy Doppler signal and obtain the stationary wavelet transform
down to level 4.

load noisdopp;
swc = swt(noisdopp,4,'sym8');

Plot the original signal and the level 1 and 3 wavelet coefficients. Plot the
level 4 approximation.

subplot(411)
plot(noisdopp);
subplot(412);
plot(swc(1,:)); ylabel('D1');
set(gca,'ytick',[]);
subplot(413)
plot(swc(3,:)); ylabel('D3');
set(gca,'ytick',[]);
subplot(414);
plot(swc(5,:)); ylabel('A4');
set(gca,'ytick',[]);

3-28

Nondecimated Discrete Wavelet Analysis

The wavelet and approximation coefficients at each level are equal in length
to the input signal. The additive noise is almost entirely localized in the
level one detail coefficients. The level 3 details coefficients captures the
high-frequency oscillations at the beginning of the Doppler signal. The level 4
approximation coefficients are a lowpass approximation to the Doppler signal.

Obtain the 2-D nondecimated wavelet transform of an image. Use the
Daubechies least asymmetric wavelet, sym4, and obtain the multiresolution
analysis down to level 3. Load the image. Use wcodemat to scale the matrix
for display.

load tartan;
nbcol = size(map,1);
cod_X = wcodemat(X,nbcol);

3-29

3 Getting Started with Wavelet Analysis

Obtain the nondecimated multiresolution analysis down to level 3.

[ca,chd,cvd,cdd] = swt2(X,3,'sym4');

Display the original image and the approximation and detail coefficients
at each level.

subplot(221)
image(cod_X)
title('Original image');
colormap(map)

for k = 1:3
cod_ca = wcodemat(ca(:,:,k),nbcol);
cod_chd = wcodemat(chd(:,:,k),nbcol);
cod_cvd = wcodemat(cvd(:,:,k),nbcol);
cod_cdd = wcodemat(cdd(:,:,k),nbcol);
decl = [cod_ca,cod_chd;cod_cvd,cod_cdd];

subplot(2,2,k+1)
image(decl)

title(['SWT dec.: approx. ', ...
'and det. coefs (lev. ',num2str(k),')']);
colormap(gray)

end

3-30

Nondecimated Discrete Wavelet Analysis

3-31

3 Getting Started with Wavelet Analysis

Critically Sampled Wavelet Packet Analysis
This example shows how to obtain the wavelet packet transform of a 1-D
signal. The example also demonstrates that frequency ordering is different
from Paley ordering.

Create a signal consisting of a sine wave with a frequency of 7π/8
radians/sample in additive white Gaussian N(0,1/4) noise. The sine wave
occurs between samples 128 and 512 of the signal.

rng default;
dwtmode('per');
n = 0:1023;
indices = (n>127 & n<=512);
x = cos(7*pi/8*n).*indices+0.5*randn(size(n));

Obtain the wavelet packet transform down to level 2 using the Daubechies
least asymmetric wavelet with 4 vanishing moments. Plot the wavelet packet
tree.

T = wpdec(x,2,'sym4');
plot(T);

Find the Paley and frequency ordering of the terminal nodes.

[tn_pal,tn_freq] = otnodes(T);

tn_freq contains the vector [3 4 6 5], which shows that the highest
frequency interval, [3π/4, π), is actually node 5 in the Paley-ordered wavelet
packet tree.

Click on node (2,2) in the wavelet packet tree to see that the frequency
ordering correctly predicts the presence of the sine wave.

3-32

Critically Sampled Wavelet Packet Analysis

The wavelet packet transform of a 2-D image yields a quarternary wavelet
packet tree. Load an example image. Use the biorthogonal B-spline wavelet
with 3 vanishing moments in the reconstruction wavelet and 5 vanishing
moments in the decomposition wavelet. Plot the resulting quartenary wavelet
packet tree.

load tartan;
T = wpdec2(X,2,'bior3.5');
plot(T);

3-33

3 Getting Started with Wavelet Analysis

Matching Pursuit
This example shows how to perform matching pursuit on a 1-D input signal.

Load the cuspamax signal. Construct a dictionary consisting of Daubechies
least asymmetric wavelet packets at level 4, Daubechies extremal phase
wavelets at level 2, the DCT-II basis, the sin basis, and the shifted Kronecker
delta basis.

load cuspamax;
lstcpt = {{'wpsym4',1},{'db4',2},'dct','sin','RnIdent'};
mpdict = wmpdictionary(length(cuspamax),'LstCpt',lstcpt);

Use orthogonal matching pursuit to obtain an approximation of the signal in
the overcomplete dictionary, mpdict, with 25 iterations. Plot the result as a
movie, updating every 5 iterations.

[yfit,r,coeff,iopt,qual] = wmpalg('OMP',cuspamax,mpdict,...
'typeplot','movie','stepplot',5);

3-34

	toc
	Getting Started with Wavelet Toolbox Software
	Wavelet Toolbox Product Description
	Key Features

	Installing Wavelet Toolbox Software
	System Recommendations
	Platform-Specific Details
	Windows Fonts
	Fonts for Non-Windows Platforms
	Mouse Compatibility

	Wavelets: Tools for Sparse Representation
	What is a Wavelet?
	What Can Wavelet Analysis Do?

	From Fourier Analysis to Wavelet Analysis
	Inner Products
	Fourier Transform
	Short-Time Fourier Transform

	Continuous Wavelet Transform
	Definition of the Continuous Wavelet Transform
	Scale
	Scale and Frequency

	Shifting
	CWT as a Windowed Transform
	CWT as a Filtering Technique
	DFT-Based Continuous Wavelet Transform
	Inverse Continuous Wavelet Transform
	Continuous Wavelet Transform Algorithm
	Interpreting CWT Coefficients
	Redundancy in the Continuous Wavelet Transform

	Critically-Sampled Discrete Wavelet Transform
	One-Stage Filtering: Approximations and Details
	Multiple-Level Decomposition
	Number of Levels

	Critically-Sampled Wavelet Reconstruction
	Reconstruction Filters
	Reconstructing Approximations and Details
	Wavelets From Conjugate Mirror Filters
	Scaling Function

	Wavelet Packet Analysis
	Introduction to Wavelet Families
	Haar
	Daubechies
	Biorthogonal
	Coiflets
	Symlets
	Morlet
	Mexican Hat
	Meyer
	Other Real Wavelets
	Complex Wavelets

	References

	Using Wavelets
	Introduction to Wavelet Toolbox GUIs and Functions
	Wavelets: Working with Images
	Understanding Images in the MATLAB Environment
	Indexed Images
	Wavelet Decomposition of Indexed Images
	How Decompositions Are Displayed

	RGB (Truecolor) Images
	Wavelet Decomposition of Truecolor Images
	Other Images
	Image Conversion
	Example 1: Converting Color Indexed Images
	Example 2: Converting an RGB TIF Image

	One-Dimensional Wavelet Density Estimation
	One-Dimensional Estimation Using the Graphical Interface
	Importing and Exporting Information from the Graphical Interface

	Interactive 1-D Wavelet Coefficient Selection
	Interactive 2-D Wavelet Coefficient Selection
	One-Dimensional Extension
	One-Dimensional Extension Using the Command Line
	One-Dimensional Extension Using the Graphical Interface
	Importing and Exporting Information from the Graphical Interface

	Two-Dimensional Extension
	Two-Dimensional Extension Using the Command Line
	Two-Dimensional Extension Using the Graphical Interface
	Importing and Exporting Information from the Graphical Interface

	Image Fusion
	Image Fusion Using the Command Line
	Example 1: Fusion of Two Different Images
	Example 2: Restoration by Fusion from Fuzzy Images

	Image Fusion Using the Graphical Interface
	Saving the Synthesized Image

	One-Dimensional Fractional Brownian Motion Synthesis
	Fractional Brownian Motion Synthesis Using the Command Line
	Fractional Brownian Motion Synthesis Using the Graphical Interfa
	Saving the Synthesized Signal

	New Wavelet for CWT
	New Wavelet for CWT Using the Command Line
	New Wavelet for CWT Using the Graphical Interface
	Saving the New Wavelet

	Getting Started with Wavelet Analysis
	Wavelet Families and Properties
	Visualizing Wavelets, Wavelet Packets, and Wavelet Filters
	Continuous Wavelet Analysis
	DFT-Based Continuous Wavelet Transform and Inverse Continuous Wa
	Critically-Sampled Discrete Wavelet Analysis
	1-D Wavelet Denoising
	2-D Decimated Discrete Wavelet Analysis

	Lifting
	Nondecimated Discrete Wavelet Analysis
	Critically Sampled Wavelet Packet Analysis
	Matching Pursuit

